CHAPTER 7 © AUTHENTICATION

// Redirect the user to the home page
header("Location: http://www.asite.com/lab.php");
}

>

Putting the pieces together requires an if statement to determine if the user has entered the user ID
and password. If the user has not done so, the HTML code to request them is displayed. If the information
has been entered (and is valid using the HTMLS5 pattern expressions shown) the else portion of the
statement will execute (storing the values in the session variables and calling the 1ab.php program). This
provides you with the basic shell of accepting the user ID and password, verifying they exist, and calling the
program in the interface tier if they do exist. Of course, you need to authenticate the user ID and password
before calling the program.

Programming note—The server variables PHP_AUTH_USER and PHP_AUTH_PW can be used for
user ID and password validation, instead of using session variables.

header ('WWW-Authenticate: Basic realm="ABC Canine"');
header('HTTP/1.0 401 Unauthorized');

Unauthorized header messages can be created if the user has not entered a user 1D/
password or a valid user ID/password. This will automatically cause the system to request
the user enter a user ID/password. This technique is pretty straightforward. However,
there have been some reports, in the past, of browsers not functioning properly with this
technique. Besides, creating your own technique allows you to design the login screen with
the same style as the rest of your web site.

For more information, visit:
http://php.net/manual/en/features.http-auth.php

$valid useridpasswords = array ("sjohnson" => "N3working");

$valid_userids = array_keys($valid_useridpasswords);

$userid = $ SESSION['username'];

$password = $ SESSION['password'];

$valid = (in_array($userid, $valid userids)) &8 ($password == $valid useridpasswords[$userid]);
If($valid) { header("Location: http://www.asite.com/lab.php");}

There are several ways you can authenticate user IDs and passwords. If you are creating a system
that does not require user IDs and passwords to change, you could use arrays. In the previous example
the $valid_useridpasswords associate array contains the combination of valid user IDs and passwords.
The PHP method array_keys places all keys (in this example the user IDs) into a separate array ($valid_
userids). After the session variables have been placed in $userid and $password, the PHP in_array method
is used to determine if the correct combination of user ID and password exists. in_array determines if the
user ID exists in the array. Then the user ID is used as the subscript to pull the password from the valid_
useridpasswords array and compare it to the value in $password. If the user ID exists and the passwords
are the same, then everything is valid. $valid will contain TRUE. If either (or both) are not valid, $valid will
contain FALSE. If $valid is TRUE, the application redirects to the lab.php program.

Technically properties in a session are secured from any access outside the session. However, there
have been reported instances, in the past, of hacker programs breaking this security and accessing session
information. If the user ID and password, in this example, are stored in session variables and passed across
the Internet to another program, hackers might gain access to the information.

228

www.it-ebooks.info

http://www.asite.com/lab.php
http://php.net/manual/en/features.http-auth.php
http://www.asite.com/lab.php
http://www.it-ebooks.info/

