
Chapter 6 ■ Data ObjeCts

199

The destructor method attempts to connect to the database. If the connection is successful, the method
removes any preexisting Dogs table and creates a new one with the required fields. (Note: It would probably
be better to rename the old one and create a new one.). If the old table can be removed and the new table
created, then the method attempts to insert rows into the table. The SQL INSERT statement places the values
from $dog_name, $dog_weight, $dog_color, and $dog_breed into a row in the table. The foreach loops
retrieve each row from the associate array to be placed into the table. If any of the inserts are not successful,
an exception is thrown. An example program is located under Chapter 6 on the book’s web site.

Programming note—The Apache server must be properly configured and MySQL must
be properly installed to run this (or a similar) database example. $server must be set
to the URL, “localhost”, or “127.0.0.1”. $db_username must be set to the user ID name to
access the database ('root' if a user ID has not been configured). $db_password must be
set to the database password (or '' if there is no password). $database must be set to the
database name. There is a large varieties of ways to access and manipulate databases
in the PHP language.

Do It
 1. Download the example files for this section from the book’s web site. Adjust the

deleteRecords method to allow the ability to delete multiple records. However,
also include a check to limit the amount of records that can be deleted. It would
not be very secure to allow all records to be deleted. If an attempt is made to
delete all records (or too many records), an exception should be raised. The
exception should cause the calling program (eventually dog_interface) to write
an error message to the main log file, e-mail the support personnel, and display
the general message to the users (shown in Chapter 5). Adjust the testdata
program to test the ability to delete multiple records and catch the exceptions.

 2. Download the example files for this section from the book’s web site. Adjust the
testdata program to test all remaining scenarios that have not already been
tested. These are related to inserting, updating (more than one), reading, and
deleting records. Be sure to test improperly formatted information. Create a try
catch block in the testdata program to capture any exceptions. You can use the
try catch block from dog_interface in Chapter 5 as an example.

Backup and Recovery
There is always a possibility that something can go wrong when changes are made to stored information.
While a well-developed application must filter and clean data before it is saved; it must also be prepared
to handle the possibility that bad data may still flowed through and corrupt the information. In addition
to intentional corruption, unforeseen problems (such as system crashes) may occur. An application must
provide the ability to recover without the loss of data. This can be accomplished by logging change requests
and backing up valid information. Recovery can be accomplished by using a valid backup and reapplying
valid changes to the backup files to produce up-to-date information.

You can make just a few minor changes to the dogdata file (Example 6-1) to create a change log and
to provide backup and recovery capability. First, you will create a main method (processRecords) that will
interpret any data passed into the class. This function will simplify the recovery process by allowing the
recovery program to pass all change log information into one method. This will also make dependency
injection easier to accomplish.

www.it-ebooks.info

http://www.it-ebooks.info/

	Chapter 6: Data Objects
	 MySQL Data
	 Do It

	 Backup and Recovery

