
Chapter 6 ■ Data ObjeCts

191

private $dogs_array = array(); defined as an empty array initially
libxml:use_internal_errors(true);
function __construct() {
 $xmlfile = file_get_contents(get_dog_application("datastorage"));
 $xmlstring = simplexml:load_string($xmlfile);
 if ($xmlstring === false) {
 $errorString = "Failed loading XML: ";
 foreach(libxml:get_errors() as $error) {
 $errorString .= $error->message . " "; }
 throw new Exception($errorString); }
$json = json_encode($xmlstring);
$this->dogs_array = json_decode($json,TRUE);
}

By default, XML parsing errors will cause the system to display the errors to the user and shut down
the program. The libxml:user_internal_errors(true) method will suppress the errors. When the string
is converted to XML format via the simplexml:load_string method, the XML is parsed to determine if it
is valid. If it is not valid, the method will return FALSE instead of the XML information. The if statement
shown will create an $errorString and use the foreach statement to loop through each error returned by
the libxml:get_errors method (which returns an array containing the errors). Once all errors are collected,
it will raise an exception passing the $errorString. The dog_interface program will catch this error and
process it, as shown in Chapter 5.

This example does make one bad assumption (which simplifies the example). It assumes that the
$errorString does not exceed the maximum capacity of 120 characters for the log file. A very badly
formatted file could quickly cause $errorString to exceed this size. This limit can be adjusted in the PHP
configuration file.

With the data automatically being saved whenever the data object is removed from memory, the insert,
update, and delete methods only need to adjust the contents of the multidimensional associative array. Let’s
take a first look at creating a delete method since you have already seen an example in Chapter 5.

In the readerrorlog program (in Example 5-8) you created a deleterecord method. The method was
used for regular multidimensional arrays. We could make a few adjustments to this routine to create the
deleteRecord method for the dog_data class.

function deleteRecord($recordNumber) {
 foreach ($this->dogs_array as $dogs=>&$dogs_value) {
 for($J=$recordNumber; $J < count($dogs_value) -1; $J++)
 {
 foreach ($dogs_value[$J] as $column => $column_value)
 {
 $dogs_value[$J][$column] = $dogs_value[$J + 1][$column];
 }
 }
unset ($dogs_value[count($dogs_value) -1]);
 }
 }

In the previous deleterecord method, the number of rows in the array and the array itself were passed
into the method. The array in dog_data class is populated by the XML file containing the dog information.
There is no property set with the number of records. This is not a problem. The PHP method count will
return the size of an array. You can access and update the dogs_array (which is a protected private property)
using the $this pointer. Methods in classes can use the this pointer to access and update protected
properties; it is not necessary to pass them into a method. The only property you need to pass to the
deleteRecord method is the record number ($recordNumber) to delete.

www.it-ebooks.info

http://www.it-ebooks.info/

