
Chapter 4 ■ SeCured uSer InterfaCeS

137

<application>
<type ID="breeds">
<location>breeds.xml</location>
</type>
</application>
</dog_applications>

In Example 4-10, you have created a simple XML file that will be used for version changes of the
significant files in the PHP application. Each application tag identifies the type of file (dog, select box,
breeds). Each location tag within the application tag provides the file name and location (although in
this example you have all files in the same location). Once you adjust the program to use this file, you will
have the flexibility to change the file names (such as the example using dog3.php instead of dog.php) and
the location without having to change any program code. This can help you to swap versions in/out of the
application during the development process.

You will now create a Dog_container class that will contain two methods. get_dog_application will be
used to “fetch” the name and location of any of the files listed in the XML file. The create_object method will
create an instance of either the dog class or the get_breeds class.

Example 4-11. The dog_container.php file

<?php
class Dog_container
{
private $app;
private $dog_location;
function __construct($value)
{
if (function_exists('clean_input'))
{
$this->app = $value;
}
else
{
exit;
} }
public function set_app($value)
{
$this->app = $value;
}
public function get_dog_application()
{
$xmlDoc = new DOMDocument();
if (file_exists("dog_applications.xml"))
{
$xmlDoc->load('dog_applications.xml');
$searchNode = $xmlDoc->getElementsByTagName("type");
foreach($searchNode as $searchNode)
{
 $valueID = $searchNode->getAttribute('ID');
 if($valueID == $this->app)

www.it-ebooks.info

http://www.it-ebooks.info/

