

University of Kasdi Merbah Ouargla

Faculty of New Technologies of Information and Communication Computer Science and Information Technolgy Department First year Engineer of Computer Science Module Analysis 1

Final Exam (2023/2024)

Exercise 1 (4p). Let $A = \left\{1 - \frac{2(-1)^n}{n}, n \in \mathbb{N}^*\right\}$. Answer true or false with explanation

1. A is bounded. 2. $\sup A = 7$. 3. $\max A$ not exist. 4. $\min A = 1$.

Exercise 2 (4p). From the equivalent between the functions calculate the limit, when x tends to 0, of:

$$f(x) = \frac{(1 - \cos x)\sin x}{x^2 \ln(1 + x)}$$

Exercise 3 (6p). Let the function f define by

$$f(x) = \begin{cases} \frac{3 - x^2}{2} & \text{if } x < 1\\ \frac{1}{x} & \text{if } x \ge 1 \end{cases}$$

- 1. Determine the domain of definition \mathcal{D}_f of the function f.
- 2. Show that f is continuous on \mathcal{D}_f .
- 3. Prove that f is differentiable on \mathcal{D}_f .

4. By applying the finite increment theorem, show that there exists $c \in]0, 2[$ such that 2f'(c) = f(2) - f(0)

- Determine all possible values of c

Exercise 4 (6p). We consider the sequences $(u_n)_{n \in \mathbb{N}^*}$ and $(v_n)_{n \in \mathbb{N}^*}$ defined for all $n \in \mathbb{N}^*$ by

$$u_n = \sum_{k=1}^{k=n} \frac{1}{k^2}, \quad v_n = u_n + \frac{3}{n}$$

- 1. Study the monotony of the sequences $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$. (3p)
- 2. Show that for all $n \in \mathbb{N}^*$, $u_n \leq v_n$. (1p)

- 2
- 3. Prove that the sequence $(v_n u_n)_{n \in \mathbb{N}^*}$ converges to 0. (1p)
- 4. What have we just shown about the sequences $(u_n)_n \in \mathbb{N}^*$ and $(v_n)_{n \in \mathbb{N}^*}$ (1p)?

Good luck

Correction 1. We have
$$A = \left\{1 - \frac{2(-1)^n}{n}, n \in \mathbb{N}^*\right\}$$
 and for all $n \in \mathbb{N}$ we have
$$A = \begin{cases} 1 - \frac{2}{n}, & \text{if } n \text{ even} \\ 1 + \frac{2}{n}, & \text{if } n \text{ odd.} \end{cases}$$

For n = 1 we get A = 3, for n = 2 we have A = 0 and when $n \longrightarrow +\infty$ we get A = 1, then for all $n \ge 1$ we have $0 \le A \le 3$.

- 1. A is bounded. True because $0 \le A \le 3$
- 2. $\sup A = 7$. False, $\sup A = 3$.
- 3. max A not exist. False, exist and max A = 3.
- 4. $\min A = 1$. False, $\min A = 0$.

Correction 2. Calculate the limit, when x tends to 0, of:

$$f(x) = \frac{(1 - \cos x)\sin x}{x^2 \ln(1 + x)}$$

We know that: $1 - \cos x \sim_0 \frac{x^2}{2}$, $\sin x \sim_0 x$ and $\ln(1+x) \sim_0 x$ then

$$f(x) \sim_0 \frac{\frac{x^2}{2}x}{x^3} = \frac{1}{2}$$

so $\lim_{x \to 0} f(x) = \frac{1}{2}$.

Correction 3. 1. $\mathcal{D}_f = \mathbb{R}$.

2.- For x < 1, the function f is continuous because f polynome.
For x > 1, the function ¹/_x is continuous.
For x=1 we have

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1) = 1.$$

Then f is continuous for all $x \in \mathcal{D}_f$.

3. We note that for $x \neq 1$, f is differentiable.

-For $x \longrightarrow 1^-$ we have:

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\frac{3 - x^2}{2} - 1}{x - 1} = -1$$

-For $x \longrightarrow 1^+$ we have:

$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{\frac{1}{x} - 1}{x - 1} = -1$$

We conclude that $f'_r(1) = f'_l(1)$ and f is differentiable on 1 so is differentiable on \mathcal{D}_f . 4. We have f is continuous and differentiable on \mathbb{R} then it is continuous and differentiable on [0,2] so we can applying the finite increment theorem and there exist $c \in]0,2[$ such that f(2) - f(0) = 2f'(c) so

$$\frac{1}{2} - \frac{3}{2} = 2f'(c) \Leftrightarrow f'(c) = -\frac{1}{2}$$

the possible values of c:

- For
$$0 < c \le 1$$
, $f'(c) = -c = -\frac{1}{2} \Rightarrow c = \frac{1}{2}$.
- For $1 < 1 \le 2$, $f'(c) = -\frac{1}{c^2} = -\frac{1}{2} \Rightarrow c^2 = 2 \Rightarrow c = \pm\sqrt{2}$.
Since $-\sqrt{2} \notin]0, 2[$ so $c = \sqrt{2}$

Correction 4. 1. We have

$$u_{n+1} - u_n = \sum_{k=1}^{k=n+1} \frac{1}{k^2} - \sum_{k=1}^{k=n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0$$

then, for all $n \ge 1$ we have $(u_n)_{n \in \mathbb{N}^*}$ increasing so it's monotone. Another hand, we have

$$v_{n+1} - v_n = \sum_{k=1}^{k=n+1} \frac{1}{k^2} + \frac{3}{n+1} - \sum_{k=1}^{k=n} \frac{1}{k^2} - \frac{3}{n}$$
$$= \frac{1}{(n+1)^2} - \frac{3}{n(n+1)}$$
$$= \frac{-2n^2 - 5n - 3}{n(n+1)^3} < 0$$

then, for all $n \ge 1$ we have $(v_n)_{n \in \mathbb{N}^*}$ decreasing so it's monotone. 2. For all $n \in \mathbb{N}^*$, we have

$$u_n - v_n = -\frac{1}{n} < 0 \Leftrightarrow u_n \le v_n.$$

3. We have

$$v_n - u_n = \frac{1}{n}, \quad \forall n \ge 1 \Leftrightarrow \lim_{n \to +\infty} v_n - u_n = \lim_{n \to +\infty} \frac{1}{n} = 0.$$

4. We conclude that $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ are adjacent.