University of Kasdi Merbah Ouargla
Faculty of New Technologies of Information and Communication Computer Science and Information Technolgy Department First year Engineer of Computer Science Module Analysis 1 Final Exam
(2023/2024)

Exercise 1 (4p). Let $A=\left\{1-\frac{2(-1)^{n}}{n}, \quad n \in \mathbb{N}^{*}\right\}$. Answer true or false with explanation

1. A is bounded. 2. $\sup A=7$. 3. $\max A$ not exist. 4. $\min A=1$.

Exercise $2(4 \mathrm{p})$. From the equivalent between the functions calculate the limit, when x tends to 0 , of:

$$
f(x)=\frac{(1-\cos x) \sin x}{x^{2} \ln (1+x)}
$$

Exercise 3 (6p). Let the function f define by

$$
f(x)=\left\{\begin{array}{l}
\frac{3-x^{2}}{2} \quad \text { if } x<1 \\
\frac{1}{x} \quad \text { if } x \geq 1
\end{array}\right.
$$

1. Determine the domain of definition \mathcal{D}_{f} of the function f.
2. Show that f is continuous on \mathcal{D}_{f}.
3. Prove that f is differentiable on \mathcal{D}_{f}.
4. By applying the finite increment theorem, show that there exists $c \in] 0,2[$ such that $2 f^{\prime}(c)=f(2)-f(0)$

- Determine all possible values of c

Exercise 4 (6p). We consider the sequences $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$ defined for all $n \in \mathbb{N}^{*}$ by

$$
u_{n}=\sum_{k=1}^{k=n} \frac{1}{k^{2}}, \quad v_{n}=u_{n}+\frac{3}{n}
$$

1. Study the monotony of the sequences $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$. (3p)
2. Show that for all $n \in \mathbb{N}^{*}, u_{n} \leq v_{n}$. (1p)
3. Prove that the sequence $\left(v_{n}-u_{n}\right)_{n \in \mathbb{N}^{*}}$ converges to 0 . (1p)
4. What have we just shown about the sequences $\left(u_{n}\right)_{n} \in \mathbb{N}^{*}$ and $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$ (1p)?

Good luck

Correction

Correction 1. We have $A=\left\{1-\frac{2(-1)^{n}}{n}, \quad n \in \mathbb{N}^{*}\right\}$ and for all $n \in \mathbb{N}$ we have

$$
A= \begin{cases}1-\frac{2}{n}, & \text { if } n \text { even } \\ 1+\frac{2}{n}, & \text { if } n \text { odd }\end{cases}
$$

For $n=1$ we get $A=3$, for $n=2$ we have $A=0$ and when $n \longrightarrow+\infty$ we get $A=1$, then for all $n \geq 1$ we have $0 \leq A \leq 3$.

1. A is bounded. True because $0 \leq A \leq 3$
2. $\sup A=7$. False, $\sup A=3$.
3. $\max A$ not exist. False, exist and $\max A=3$.
4. $\min A=1$. False, $\min A=0$.

Correction 2. Calculate the limit, when x tends to 0 , of:

$$
f(x)=\frac{(1-\cos x) \sin x}{x^{2} \ln (1+x)}
$$

We know that: $1-\cos x \sim_{0} \frac{x^{2}}{2}$, $\sin x \sim_{0} x$ and $\ln (1+x) \sim_{0} x$ then

$$
f(x) \sim_{0} \frac{\frac{x^{2}}{2} x}{x^{3}}=\frac{1}{2}
$$

so $\lim _{x \rightarrow 0} f(x)=\frac{1}{2}$.
Correction 3. 1. $\mathcal{D}_{f}=\mathbb{R}$.
2.- For $x<1$, the function f is continuous because f polynome.

- For $x>1$, the function $\frac{1}{x}$ is continuous.
- For $x=1$ we have

$$
\lim _{x \longrightarrow 1^{+}} f(x)=\lim _{x \longrightarrow 1^{-}} f(x)=f(1)=1 .
$$

Then f is continuous for all $x \in \mathcal{D}_{f}$.
3. We note that for $x \neq 1, f$ is differentiable.
-For $x \longrightarrow 1^{-}$we have:

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \longrightarrow 1^{-}} \frac{\frac{3-x^{2}}{2}-1}{x-1}=-1
$$

-For $x \longrightarrow 1^{+}$we have:

$$
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \longrightarrow 1^{+}} \frac{\frac{1}{x}-1}{x-1}=-1
$$

We conclude that $f_{r}^{\prime}(1)=f_{l}^{\prime}(1)$ and f is differentiable on 1 so is differentiable on \mathcal{D}_{f}. 4. We have f is continuous and differentiable on \mathbb{R} then it is continuous and differentiable on $[0,2]$ so we can applying the finite increment theorem and there exist $c \in] 0,2[$ such that $f(2)-f(0)=2 f^{\prime}(c)$ so

$$
\frac{1}{2}-\frac{3}{2}=2 f^{\prime}(c) \Leftrightarrow f^{\prime}(c)=-\frac{1}{2}
$$

the possible values of c :

- For $0<c \leq 1, f^{\prime}(c)=-c=-\frac{1}{2} \Rightarrow c=\frac{1}{2}$.
- For $1<1 \leq 2, f^{\prime}(c)=-\frac{1}{c^{2}}=-\frac{1}{2} \Rightarrow c^{2}=2 \Rightarrow c= \pm \sqrt{2}$.

Since $-\sqrt{2} \notin] 0,2[$ so $c=\sqrt{2}$

Correction 4. 1. We have

$$
u_{n+1}-u_{n}=\sum_{k=1}^{k=n+1} \frac{1}{k^{2}}-\sum_{k=1}^{k=n} \frac{1}{k^{2}}=\frac{1}{(n+1)^{2}}>0
$$

then, for all $n \geq 1$ we have $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ increasing so it's monotone.
Another hand, we have

$$
\begin{aligned}
v_{n+1}-v_{n} & =\sum_{k=1}^{k=n+1} \frac{1}{k^{2}}+\frac{3}{n+1}-\sum_{k=1}^{k=n} \frac{1}{k^{2}}-\frac{3}{n} \\
& =\frac{1}{(n+1)^{2}}-\frac{3}{n(n+1)} \\
& =\frac{-2 n^{2}-5 n-3}{n(n+1)^{3}}<0
\end{aligned}
$$

then, for all $n \geq 1$ we have $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$ decreasing so it's monotone.
2. For all $n \in \mathbb{N}^{*}$, we have

$$
u_{n}-v_{n}=-\frac{1}{n}<0 \Leftrightarrow u_{n} \leq v_{n}
$$

3. We have

$$
v_{n}-u_{n}=\frac{1}{n}, \quad \forall n \geq 1 \Leftrightarrow \lim _{n \longrightarrow+\infty} v_{n}-u_{n}=\lim _{n \longrightarrow+\infty} \frac{1}{n}=0 .
$$

4. We conclude that $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$ are adjacent.
