Written exam

First mane:.....Last mane :....

Choose the correct answer:

1) Let the random process defined by: $X(t) = A\cos(\omega_0 t + \Theta)$, where, A and ω_0 are constants, Θ is a random variable with a probability density function:

$$f_{\Theta}(\theta) = \begin{cases} \frac{4}{\pi}, & |\theta| \le \frac{\pi}{8} \\ 0, & \text{otherwise} \end{cases}$$

- *a*) Its mathematical expectation is equal to:
- $\Box \quad \frac{4\sqrt{2}A}{\pi}\cos\omega_0 t \qquad \Box \quad A$
 - *b*) Its autocorrelation function equals:

$$\frac{A^2}{2}\cos\omega_0\tau$$

- $\Box A^2 \cos(2\omega_0 t + 2\omega_0 \tau)$
 - c) The random process X(t) is :
- \Box Not stationary and not ergodic
- \Box Stationary and ergodic
- 2) Consider the hypothesis testing problem in which:

$$f_{Y|H_0}(y \mid H_0) = \operatorname{rect}\left(y - \frac{1}{2}\right) \text{ and } f_{Y|H_1}(y \mid H_1) = \frac{1}{2}\operatorname{rect}\left(\frac{y - 1}{2}\right)$$

- *a*) $\eta > 1/2$, the decision regions are :
- $\Box \quad \text{For } 0 \le y \le 1 \Rightarrow \text{decide } H_1 \text{ and for } 1 \le y \le 2 \Rightarrow \text{decide } H_0$
- decide H_1 or H_0 in at the range $0 \le y \le 1$ and decide H_1 for $1 < y \le 2$.
- \square always decide H_1
- $\Box \quad \text{For } 0 \le y \le 1 \Rightarrow \text{decide } H_0 \text{ and for } 1 \le y \le 2 \Rightarrow \text{decide } H_1$
 - **b**) The probability of false alarm is :

$$\square P_F = \int_{Z_1} f_{Y|H_0}(y \mid H_0) dy = \int_0^1 0 \, dy = 0$$

$$\square P_F = \int_{Z_1} f_{Y|H_0}(y \mid H_0) dy = \int_1^2 0 \, dy = 0$$

$$\square P_F = \int_{Z_1} f_{Y|H_0}(y \mid H_0) dy = \int_1^2 1 \, dy = 1$$

$$\square P_F = \int_{Z_1} f_{Y|H_0}(y \mid H_0) dy = \int_0^1 1 \, dy = 1$$

M^{me.} S. Benkrinah |

$$\Box \quad \frac{\sqrt{2}A}{\pi} \qquad \qquad \Box \quad \frac{4\sqrt{2}A}{\pi}$$

$$\Box \frac{A^2}{2}\cos\omega_0\tau + \frac{2A^2}{\pi}\cos(2\omega_0t + 2\omega_0\tau)$$
$$\Box \frac{2A^2}{\pi}\cos(2\omega_0t + 2\omega_0\tau)$$

- Strict-Sense Stationary
- □ Wide-Sense Stationary

3) Let $X_1, ..., X_n$ be independent and identically distributed random variables whose density is defined by:

$$f_{\theta}(x) = \begin{cases} \frac{x}{\theta} \exp\left(-\frac{x^2}{2\theta}\right) & \text{si } x > 0\\ 0 & \text{Otherwise} \end{cases}$$

a) The MLE of θ is given by:

$$\square \quad \hat{\theta}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \quad \square \quad \hat{\theta}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \square \quad \hat{\theta}_{MLE} = \frac{1}{2n} \sum_{i=1}^{n} x_i^2 \quad \square \quad \hat{\theta}_{MLE} = \frac{1}{2n} \sum_{i=1}^{n} x_i$$

b) The Cramer-Rao Bound is as follows :

$$\Box \quad BCR = \frac{\theta^2}{n} \qquad \Box \quad BCR = \frac{\theta}{2n} \qquad \Box \quad BCR = \frac{\theta^2}{2n} \qquad \Box \quad BCR = \frac{\theta}{n}$$

4) The Doppler shift can be calculated using the expression: $\delta f = f_e \frac{2v \cos \theta}{c}$. *a)* If $f_e=25$ GHz, $c=3\times10^8$ m/s, $\theta=25^\circ$ and $\delta f=3.3567$ KHz, so:

$$□ v=80 \text{ Km/h} □ v=20 \text{ m/s} □ v=25 \text{m/s} □ v=120 \text{ Km/h}$$
b) If f_e=25GHz, c=3×10⁸m/s, v=100 Km/h and δf=4.3504 KHz, so:
□ θ=30° □ θ=15° □ θ=20° □ θ=25°

5) Using 3 distributed CA-CFAR detectors (identical case), the probability of false alarm, using exponential conditional probability laws and the "And" fusion rule is given by the following expression:

$$P_F = \left[1 + T\right]^{-3N}$$

a) If N=32 and $P_F=10^{-4}$, the constant multiplier T equals:

□ 0.3335 □ 0.7783 □ 0.2115

b) By considering these conditions and setting μ =25 dB, the detection probability is equal to :

$$\square P_{D} = \left[1 + \frac{T}{(1+\mu)}\right]^{-3N} = 0.9685 \qquad \square P_{D} = \left[1 + \frac{T}{(1+\mu)}\right]^{-3N} = 0.69$$
$$\square P_{D} = \left[1 + \frac{T}{(1+\mu)}\right]^{-3N} = 0.97 \qquad \square P_{D} = \left[1 + \frac{T}{(1+\mu)}\right]^{-N} = 0.9669$$

Good luck

0.1007