Written exam

First mane:

 Last mane : \qquad
Choose the correct answer:

1) Let the random process defined by: $X(t)=A \cos \left(\omega_{0} t+\Theta\right)$, where, A and ω_{0} are constants, Θ is a random variable with a probability density function:

$$
f_{\Theta}(\theta)= \begin{cases}\frac{4}{\pi}, & |\theta| \leq \frac{\pi}{8} \\ 0, & \text { otherwise }\end{cases}
$$

a) Its mathematical expectation is equal to:
$\square \quad \frac{4 \sqrt{2} A}{\pi} \cos \omega_{0} t$ A
$\square \frac{\sqrt{2} A}{\pi}$

b) Its autocorrelation function equals:
$\square \frac{A^{2}}{2} \cos \omega_{0} \tau$
$\square \frac{A^{2}}{2} \cos \omega_{0} \tau+\frac{2 A^{2}}{\pi} \cos \left(2 \omega_{0} t+2 \omega_{0} \tau\right)$
$\square A^{2} \cos \left(2 \omega_{0} t+2 \omega_{0} \tau\right)$
$\square \frac{2 A^{2}}{\pi} \cos \left(2 \omega_{0} t+2 \omega_{0} \tau\right)$
c) The random process $X(t)$ is :
\square Not stationary and not ergodic
\square Strict-Sense Stationary
\square Stationary and ergodic
2) Consider the hypothesis testing problem in which:

$$
f_{Y \mid H_{0}}\left(y \mid H_{0}\right)=\operatorname{rect}\left(y-\frac{1}{2}\right) \text { and } f_{Y \mid H_{1}}\left(y \mid H_{1}\right)=\frac{1}{2} \operatorname{rect}\left(\frac{y-1}{2}\right)
$$

a) $\eta>1 / 2$, the decision regions are :

For $0 \leq y \leq 1 \Rightarrow$ decide H_{1} and for $1 \leq y \leq 2 \Rightarrow$ decide H_{0}
\square decide H_{1} or H_{0} in at the range $0 \leq y \leq 1$ and decide H_{1} for $1<y \leq 2$.
$\square \quad$ always decide H_{1}
\square For $0 \leq y \leq 1 \Rightarrow$ decide H_{0} and for $1 \leq y \leq 2 \Rightarrow$ decide H_{1}
b) The probability of false alarm is :
$\square \quad P_{F}=\int_{Z_{1}} f_{Y \mid H_{0}}\left(y \mid H_{0}\right) d y=\int_{0}^{1} 0 d y=0$
$\square P_{F}=\int_{Z_{1}} f_{Y \mid H_{0}}\left(y \mid H_{0}\right) d y=\int_{1}^{2} 0 d y=0$
$\square \quad P_{F}=\int_{Z_{1}} f_{Y \mid H_{0}}\left(y \mid H_{0}\right) d y=\int_{1}^{2} 1 d y=1$
$\square P_{F}=\int_{Z_{1}} f_{Y \mid H_{0}}\left(y \mid H_{0}\right) d y=\int_{0}^{1} 1 d y=1$
3) Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables whose density is defined by:

$$
f_{\theta}(x)= \begin{cases}\frac{x}{\theta} \exp \left(-\frac{x^{2}}{2 \theta}\right) & \text { si } x>0 \\ 0 & \text { Otherwise }\end{cases}
$$

a) The MLE of θ is given by:
$\square \quad \hat{\theta}_{M L E}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \quad \square \hat{\theta}_{M L E}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \square \quad \hat{\theta}_{M L E}=\frac{1}{2 n} \sum_{i=1}^{n} x_{i}^{2} . \square \quad \hat{\theta}_{M L E}=\frac{1}{2 n} \sum_{i=1}^{n} x_{i}$
b) The Cramer-Rao Bound is as follows :
$\mathrm{BCR}=\frac{\theta^{2}}{n}$
$\mathrm{BCR}=\frac{\theta}{2 n}$
$\square \quad \mathrm{BCR}=\frac{\theta^{2}}{2 n}$
$\square \quad \mathrm{BCR}=\frac{\theta}{n}$
4) The Doppler shift can be calculated using the expression: $\delta f=f_{e} \frac{2 v \cos \theta}{c}$.
a) If $f_{e}=25 \mathrm{GHz}, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \theta=25^{\circ}$ and $\delta f=3.3567 \mathrm{KHz}$, so:$\nu=80 \mathrm{Km} / \mathrm{h}$$\nu=20 \mathrm{~m} / \mathrm{s}$
$\square v=25 \mathrm{~m} / \mathrm{s}$
$\square v=120 \mathrm{Km} / \mathrm{h}$
b) If $f_{e}=25 \mathrm{GHz}, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, v=100 \mathrm{Km} / \mathrm{h}$ and $\delta f=4.3504 \mathrm{KHz}$, so:
$\theta=30^{\circ}$
$\theta=15^{\circ}$$\theta=20^{\circ}$$\theta=25^{\circ}$
5) Using 3 distributed CA-CFAR detectors (identical case), the probability of false alarm, using exponential conditional probability laws and the "And" fusion rule is given by the following expression:

$$
P_{F}=[1+T]^{-3 N}
$$

a) If $N=32$ and $P_{F}=10^{-4}$, the constant multiplier T equals:0.33350.7783
0.21150.1007
b) By considering these conditions and setting $\mu=25 \mathrm{~dB}$, the detection probability is equal to :
$\square P_{D}=\left[1+\frac{T}{(1+\mu)}\right]^{-3 N}=0.9685$
$\square \quad P_{D}=\left[1+\frac{T}{(1+\mu)}\right]^{-3 N}=0.69$
$\square \quad P_{D}=\left[1+\frac{T}{(1+\mu)}\right]^{-3 N}=0,97$
$\square \quad P_{D}=\left[1+\frac{T}{(1+\mu)}\right]^{-N}=0.9669$

Good luck

