

Université Kasdi Merbah, Ouargla Département d'Informatique et Technologies de l'Information Recherche opérationnelle Avancée

2ÈME ANNÉE MASTER INFORMATIQUE INDUSTRIELLE

CORRIGÉ-TYPE DE L'EXAMEN SEMESTRIEL+BARÈME

Exercice 1. (7 pts). Une entreprise de construction recrute 5 ouvriers et désire les répartir sur ses 3 chantiers afin de minimiser le temps d'achèvement des travaux de construction. Elle doit envoyer à chaque chantier au moins un ouvrier et selon le nombre d'ouvriers alloués, nous avons estimé le nombre de semaines nécessaires pour finir les travaux :

Nombre d'ouvriers	Chantier 1	Chantier 2	Chantier 3
1	35 semaines	25 semaines	30 semaines
2	28 semaines	20 semaines	25 semaines
3	20 semaines	15 semaines	18 semaines

- 1. On dénote par x_i , le nombre d'ouvriers affectés au chantier i, i = 1..3 et par $T_i(x_i)$ le temps de terminaison des travaux de construction du chantier i après affectation de x_i ouvriers. Formuler le problème de répartition des ouvriers qui minimise le temps total requis pour l'achèvement des travaux de construction.
- 2. On veut résoudre ce problème par programmation dynamique. Expliciter la formulation des sous problèmes $P_k(\alpha)$, l'intervalle des valeurs prises par α ainsi que la relation de récurrence de $Z_k(\alpha)$.
- 3. Déterminer alors la meilleure affectation des ouvriers.

Solution

1. Soit x_i le nombre d'ouvriers affectés au chantier i et $T_i(x_i)$ le temps de terminaison des travaux de construction du chantier i après affectation de x_i ouvriers. On a alors

$$(P) \begin{cases} \min T_1(x_1) + T_2(x_2) + T_3(x_3) \\ x_1 + x_2 + x_3 = 5 \\ x_i \geqslant 1, i = 1..3 \\ x_i \in \mathbb{N} \end{cases}$$
 (1.5 pt)

2. Les P.L $P_k(\alpha)$, k=1..3 désigne le sous problème qui correspond à l'affectation de α ouvriers aux k premiers chantiers. Donc on a :

$$P_k(\alpha) \begin{cases} \min \sum_{i=1}^k T_i(x_i) \\ \sum_{i=1}^k x_i = \alpha \\ x_i \geqslant 1, i = 1..k \\ x_i \in \mathbb{N} \end{cases}$$
 (1pt)

L'intervalle des valeurs de α est défini à partir des contraintes précédentes. D'une part on a

$$x_i \geqslant 1, i = 1..k \Rightarrow \sum_{i=1}^k x_i \geqslant k \Rightarrow \alpha \geqslant k$$
 (0.5 pt)

et d'autre part,

$$\sum_{i=1}^{3} x_i = \sum_{i=1}^{k} x_i + \sum_{i=k+1}^{3} x_i = 5 \Rightarrow \alpha = 5 - \sum_{i=k+1}^{3} x_i$$

Or

$$\sum_{i=k+1}^{3} x_i \geqslant 3 - k$$

Donc

$$\alpha \le 5 - 3 + k = k + 2$$
 (0.75 pt)

La relation de récurrence est donnée par

$$Z_k(\alpha) = \min_{1 \leqslant x_k \leqslant \alpha - k + 1} \left(T_k(x_k) + Z_{k-1}(\alpha - x_k) \right) \quad \textbf{(0.75 pt)}$$

3. Résolution:

— k = 1 (0.5 pt):

$$P_1(\alpha) \begin{cases} Z_1(\alpha) = T_1(x_1) \\ x_1 = \alpha \\ x_1 \geqslant 1 \\ x_1 \in \mathbb{N} \end{cases}$$

Avec
$$1 \le \alpha \le 3$$

— $\alpha = 1 : x_1 = 1 \Rightarrow Z_1(1) = 35$
— $\alpha = 2 : x_1 = 2 \Rightarrow Z_1(2) = 28$
— $\alpha = 3 : x_1 = 3 \Rightarrow Z_1(3) = 20$
— $k = 2$ (1 pt) :

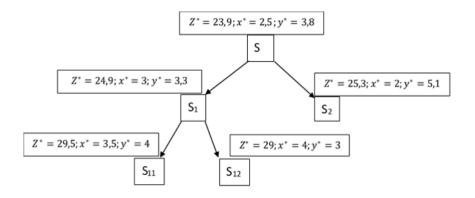
$$P_{2}(\alpha) \begin{cases} Z_{2}(\alpha) = \min_{1 \leq x_{2} \leq \alpha - 1} \left(T_{2}(x_{2}) + Z_{1}(\alpha - x_{2}) \right) \\ x_{1} + x_{2} = \alpha \\ x_{2} \geqslant 1 \\ x_{2} \in \mathbb{N} \end{cases}$$

Avec
$$2 \leqslant \alpha \leqslant 4$$
.
 $-\alpha = 2: Z_2(2) = \min_{\substack{1 \leqslant x_2 \leqslant 1 \\ 1 \leqslant x_2 \leqslant 2}} (T_2(x_2) + Z_1(2 - x_2)) = 25 + 35 = 60, x_2 = 1$
 $-\alpha = 3: Z_2(3) = \min_{\substack{1 \leqslant x_2 \leqslant 2 \\ 1 \leqslant x_2 \leqslant 3}} (T_2(x_2) + Z_1(3 - x_2)) = \min(53; 55) = 53, x_2 = 1$
 $-\alpha = 4: Z_2(4) = \min_{\substack{1 \leqslant x_2 \leqslant 3 \\ 1 \leqslant x_2 \leqslant 3}} (T_2(x_2) + Z_1(4 - x_2)) = \min(45; 48; 50) = 45, x_2 = 1$
 $-\alpha = 3: X_2(3) = \min_{\substack{1 \leqslant x_2 \leqslant 3 \\ 1 \leqslant x_2 \leqslant 3}} (T_2(x_2) + Z_1(4 - x_2)) = \min(45; 48; 50) = 45, x_2 = 1$

$$P_3(\alpha) = (P) \begin{cases} Z_3(\alpha) = \min_{1 \le x_3 \le \alpha - 2} (T_3(x_3) + Z_2(\alpha - x_3)) \\ x_1 + x_2 + x_3 = \alpha \\ x_3 \ge 1 \\ x_3 \in \mathbb{N} \end{cases}$$

Avec
$$\alpha = 5$$
. Donc $Z_3(5) = \min_{1 \leqslant x_3 \leqslant 3} (T_3(x_3) + Z_2(5 - x_3)) = \min(75; 78; 78) = 75, x_3 = 1$ La solution optimale est donc déduite : $x_3 = 1 \Rightarrow x_2 = 1 \Rightarrow x_1 = 3$ (0.5 pt).

Exercice 2. (7 pts). Le schéma ci-joint illustre la résolution d'un programme linéaire (P) en nombres entiers défini sur deux variables x, y par la méthode séparation et évaluation.



- 1. (P) est-il un problème de minimisation ou de maximisation? justifier.
- 2. Selon le schéma donné ci-dessus, déterminer la contrainte correspondante à chaque sous problème.
- 3. Existe t-il des nœuds à stériliser? les quelles? justifier.
- 4. La résolution de (P) est-elle terminée ? sinon, quel sous-ensemble faudrait-il séparer et selon quel critère de séparation ?

solution:

- 1. On peut remarquer que les valeurs de Z^* croient tout au long du processus de résolution (0.5 pt). Ce qui signifie que $Z^*(S)$ est un minorant (0.5 pt) et par conséquent, (P) est un problème de minimisation (0.5 pt).
- 2. Les contraintes qui sont utilisés pour séparer les ensembles sont données comme suit $(0.5 \text{ pt} \times 4)$:
 - $S_1 : x \geqslant 3,$
 - $-S_2: x \leq 2,$
 - $-S_{11}: y \geqslant 4$,
 - $-S_{12}: y \leq 3.$
- 3. On peut remarquer que:
 - Pour l'ensemble S_{12} , $x^* = 4 \in \mathbb{N}$ et $y^* = 3 \in \mathbb{N}$, donc $Z^*(S_{12}) = 29$ est une évaluation exacte. Par conséquent, on stérilise le nœud S_{12} (1 pt).
 - $Z^*(S_{11}) = 29.5 > Z^*(S_{12}) = 29$, donc on stérilise le nœud S_{11} (1 pt).
- 4. Non, le processus de résolution n'est pas terminé car $Z^*(S_2) = 25.3 < Z^*(S_{12}) = 29$ n'est pas une évaluation exacte (1pt) et puisque $y^* \notin \mathbb{N}$, on sépare l'ensemble S_2 en deux sous ensembles (0.5 pt) :
 - $-S_{21}: y \geqslant 6,$
 - $-S_{22}: y \leq 5.$

Exercice 3. (6 pts). On se propose de résoudre une instance définie sur *n* villes, du problème de voyageur de commerce (TSP) par programmation dynamique.

- 1. Déterminer le nombre d'étapes nécessaires (sous-problèmes) pour la résolution de TSP.
- 2. Déterminer avec justification le nombre d'états à considérer pour l'étape correspondant à $|S| = l, l \neq n-1$, où S désigne l'ensemble de villes intermédiaires.
- 3. En déduire alors la complexité asymptotique (l'ordre de grandeur) de l'algorithme de programmation dynamique pour TSP.

Solution:

- 1. On pose t la ville de départ et donc d'arrivée pour notre tournée. Comme la résolution se fait en construisant de manière séquentielle la tournée optimale, le nombre d'étapes nécessaires est égal à n (1pt).
- 2. Soit l'étape qui correspond à $|S| = l, l \neq n-1$, où S désigne l'ensemble de villes intermédiaires. Donc pour chaque ville de départ k, on doit considérer tous les chemins de k vers t passant par l villes intermédiaires parmi les n-2 restantes.

Donc le nombre d'états qui correspond à chaque ville k est égal à C_l^{n-2} (1.5 pt). Or il y' a n-1 villes de départ possibles. Par conséquent, le nombre total d'états est égal à

$$E = (n-1)\frac{(n-2!)}{(n-2-l)l!} = \frac{(n-1!)}{(n-2-l)l!}$$
 (1.5 pt)

3. La complexité asymptotique peut être estimé par $n \times E$ (1 pt). Donc, elle est de l'ordre de grandeur de $\frac{(n!)}{(n-2-l)l!}$ et par conséquent O(n!) (1 pt).