Université Kasdi Merbah Ouargla Département d'Informatique et des Technologies de l'Information

1^{ère} MASTER ASR

Module Sec1 18 Janvier 2022

Contrôle Sec1 corrigé type

(Durée 1 H)

Cocher les réponses correctes :

Critères de sécurité (2 pts)

 Quels sont les trois principaux objectifs de la sécurité informatique ? a. Confidentialité b. Intégrité C. Disponibilité 	Pour assurer les objectifs de la sécurité informatique un autre critère de sécurité doit être assuré, il s'agit de l': <u>Authentification</u>
3. Quel est le meilleur outil pour assurer la sécurité dans	4. Pour assurer l'intégrité de l'information
l'entreprise ?	transmise on utilise :
a. Un système de détection d'intrusion (IDS) X	a. Une fonction de hachage X
b. PowerPoint	b. Un chiffrement de données
c. un antivirus X	c. Une signature numérique
d. un firewall \boldsymbol{X}	e. Un certificat numérique

Cryptologie: Concepts généraux (2.5 pts)

ci yptologie : concepts generaux (2.5 pts)	
 L'art de déchiffrer des messages sans connaître la clé de chiffrement est appelé: a. La cryptographie b. La cryptologie c. La cryptanalyse X 	 2. Un algorithme de chiffrement qui possède une bonne propriété de diffusion est tel que: a. le chiffrement du message s'effectue rapidement b. une petite modification du message en clair se traduit par une modification complète du chiffré X c. aucune propriété statistique ne peut être déduite du message chiffré X
 3. Le chiffrement de César est : a. une substitution poly alphabétique b. une substitution mono alphabétique <i>X</i> c. un chiffrement par bloc 	5. Oscar a réussi à intercepter un couple (message chiffré, message en clair correspondant). A l'aide de ce couple, il a réussi à déterminer la clé <i>k</i> utilisée entre Alice et Bob. C'est une attaque de type: a. Attaque à texte chiffré
 4. Le chiffrement de Vigénère est : a. une substitution poly alphabétique <i>X</i> b. une substitution mono alphabétique c. un chiffrement par bloc <i>X</i> 	 b. Attaque à texte clair connu c. Attaque à texte clair choisi <i>X</i> 6. Le résultat de l'attaque est un: a. Cassage partiel b. Cassage local c. Cassage complet <i>X</i>
 7. Le principal défaut de l'algorithme de chiffrement One-Time Pad est: a. Il est très facile à casser b. Il est peu pratique à utiliser X c. Il est lent 	8. Les chiffrements alphabétiques sont désormais moins utilisés que les chiffrements par bloc. a. Vrai <i>X</i> b. Faux c. Les deux sont autant utilisés
9. Le principal défaut de DES était:	10. Après l'abandon de DES, un nouveau standard Américain

Page: 1

a. Sa lenteur X	a été choisi. L'algorithme qui a remplacé DES est:
b. La petite taille de la clé X	a. TDES
c. La complexité de l'algorithme	b. Blowfish
c. La compressite de l'argoritanne	c. AES X

Chiffrements asymétriques, fonctions de hachage et Macs (5.5) 1. Un MAC se calcule sur : 2. L'algorithme SHAL calcule sur :

1. Un MAC se calcule sur :	2. L'algorithme <i>SHA1</i> calcule une empreinte de :
a. un message	a. 128 bits
b. un secret	b. 160 bits X
c. un message et un secret X	c. 256 bits
3. L'avantage des chiffrements asymétriques par	4. Le protocole <i>Diffie-Hellman (DH)</i> est un protocole qui
rapport aux chiffrements symétriques est que:	sert principalement à:
a. Ils sont plus rapides que les chiffrements	 a. chiffrer/déchiffrer des messages
symétriques	b. signer des messages
b. Il n'y a pas besoin de s'échanger de clé secrète	c. s'échanger une clé secrète (key agreement) $oldsymbol{X}$
X	
d. Ils possèdent une meilleure propriété de	
confusion X	
5. Une opération clé publique peut être :	6. Une opération clé privée peut être:
a. Chiffrer une clé de session X	a. Déchiffrer une clé de session X
b. Chiffrer un petit message X	b. Générer une signature X
c. Déchiffrer une clé de session	c. Vérifier une signature
d. Générer une signature	d. Déchiffrer un petit message chiffré avec la clé
e. Vérifier une signature X	publique correspondante X
7. Alice veut envoyer un message à Bob. Elle décide	8. Sur quel(s) problème(s) difficile(s) est basé le
de chiffrer ce message via l'algorithme RSA. Elle	cryptosystème RSA ?
aura besoin de:	a. Factorisation \boldsymbol{X}
a. la clé publique de Bob X	b. LogarithmeDiscret
b. la clé privée de Bob	c. Diffie-Hellman
c. la clé privée et la clé publique de Bob	d. RacineIemeModulaire
Soit (e _b , n _b) la clé publique de Bob et d _b sa clé privée.	
Posez le calcul que vont effectuer:	9. Quelle(s) propriété(s) du message permet de garantir la
	signature ?
Alice lorsqu'elle chiffrera le message m: $\underline{c} =$	a. l'intégrité du message
$m^{e_b} \mod n_b$	b. la confidentialité du message
Bob lorsqu'il déchiffrera le message $c : \underline{m} =$	c. l'authenticité du message X
$c^{d_b} \mod n_b$	
10. Alice veut signer le message qu'elle envoie à Bob.	11. Alice veut envoyer un message chiffré via RSA à Bob.
Le message va être signé avec	L'infrastructure à clé publique (ou PKI) lui permet de:
a. la clé publique d'Alice	a. chiffrer le message de manière plus efficace
b. la clé privée d'Alice X	b. augmenter la confidentialité du message
c. la clé privée de Bob	c. s'assurer que la clé publique du destinataire est
	bien celle de Bob $ X$

Page: 2

Exercice 1 cryptographie Asymétrique - RSA (5 pts) :

```
Génération des paramètres RSA
```

```
On donne: 368^{185} = 23 \mod 391 et (-72 \times 352) + (137 \times 185) = 1
Soient p = 23 et q = 17 deux nombres premiers
```

- 1. Calculer le module RSA (n) : $n = p \times q = 23 \times 17 = 391$ (1 pt)
- 2. Qui est φ ? Comment ce nombre est-il calculé? φ est la fonction indicatrice d'Euler, $\varphi = |Z_n^*|$ =Le nombre d'éléments inversibles de \mathbb{Z}_n , $\varphi(n) = \varphi(391) = (p-1)(q-1) = (23-1)(17-1) = 22 \times 16 = 352$ (1 pt)
- 3. Soit e = 185 l'exposant publique, Comment est-il choisi ? $e \ doit \ \hat{e}tre \ impair$, $0 < e < \varphi(n) \ et \ pgcd(e, \varphi(n) = 1)$ (1 pt)
- 4. Calculer l'exposant privé :

```
On doit avoir e \times d = 1 \mod \varphi(n), nous avons: (-72 \times 352) + (137 \times 185) = 1 \text{ c-a-d}
 185 \times 137 = 1 \mod 352 \text{ donc} \ 185^{-1} = 137 \mod 351, d = 137 (1 pt)
```

5. Commente chiffrer le message x = 368?, Comment déchiffrer le message y = 23? Chiffrer x = 368

```
y = e_{kpub}(x) = x^e mod \ n = 368^{185} mod \ 391 = 23 \ (0.5 \text{ pt})

D\'{e}chiffrer \ y = 23

x = d_{kpriv}(y) = y^d mod \ n = 23^{137} mod \ 391 = 368 \ (0.5 \text{ pt})
```

Exercice 3 (QCM) (5 pts): choisir une seule réponse et justifier

- 1. Une recherche exhaustive sur les 56 bits d'une clé DES nécessite environ 56 heures. Combien de temps faudrait-il approximativement sur une clé de 64 bits ? 56 heures 64 heures 64 jours plus d'un an plus d'un an :
 - 56 bits en 56 heures implique 57 bits en $56 \times 2 = 112$ heures, 58 bits en 112×2 heures. 64 bits en $2^{(64-56)} \times 56 = 2^8 \times 56$ heures soit 256×56 heures soit plus d'un an. (1 pt)
- 2. Alice a utilisé le chiffrement de Vernam (OTP) pour envoyer un message $m \in \{0,1\}^{100}$ à Bob. Ils partageaient tous les deux une clé aléatoire $k \in \{0,1\}^{100}$. Charlie intercepte le chiffré $c = m \oplus k$. Quel est le temps nécessaire pour retrouver m? instantané 100 secondes 100 essais 2^{100} essais

2¹⁰⁰ essais:

Une clé aléatoire de 100 bits donc 2¹⁰⁰ essais. (1 pt)

3. Combien y a-t-il d'éléments dans Z_{28}^* ? 0 10 12 20 27 28

12 :

```
\varphi(28)
 = nombres d'éléments inversibles dans Z_{28}^*; \varphi(28) = \varphi(2^2 \times 7) = \varphi(4) \times \varphi(7) = (2^2 - 2^1) \times (7 - 1) = 2 \times 6 = 12 (1 pt)
```

4. Que vaut $\varphi(77)$? 0 1 24 60 76 77

60 :

77 = 7 × 11;
$$\varphi$$
(77) = (7 - 1) × (11 - 1) = 6 × 10 = 60 (1 pt)

5. Que vaut pgcd(12345, 17)? 0 1 17 34 12344 12345

1:

12345 et 17 sont premiers entre eux car 17 est premier et 12345 n'est pas un multiple de 17. (1 pt)

Page: 3