Midterm Exam Correction

Exercise 1. (6 pts) A manufacturing company produced 3 batches, B_{1}, B_{2}, and B_{3} of light bulbs during this week. The quality control team randomly selects samples of 10,5 , and 12 bulbs from the three batches, respectively, to test for defects. The historical defect rate for these bulbs is known to be 5%.

1. Calculate the probability that there are at least 2 defective light bulbs in a sample of 5 bulbs.
2. What is the average number of defective bulbs in the third sample?

Let X be the total number of defective light bulbs in the three samples.
3. Determine the distribution and the parameters of X ?
4. Use an appropriate approximation to find the probability that the total number of defective light bulbs in the three samples is at least equal to four.

Solution

Let X_{i} be the random variable denoting the number of defective light bulbs in the sample $S_{i}(0.5 \mathrm{pt})$. We have

$$
X_{i} \sim \mathcal{B}\left(n_{i}, p\right)
$$

where $p=0.05$ and $n_{1}=5, n_{2}=10, n_{3}=12$ and the distribution probability of X_{i} is

$$
P\left(X_{i}=x\right)= \begin{cases}\binom{n}{x}(0.05)^{x}(0.95)^{n_{i}-x} & \text { if } x \in\left\{0,1,2, \ldots, n_{i}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

1. We have $P\left(X_{2} \geq 2\right)=1-P\left(X_{2} \leq 1\right)(0.5 \mathrm{pt})$ where

$$
P\left(X_{1} \leq 1\right)=P\left(X_{1}=0\right)+P\left(X_{1}=1\right)=0.97741
$$

Therefore $P\left(X_{2} \geq 2\right)=0.0226(0.5 \mathrm{pt})$
2. The average number of defective light bulbs is $n_{3} \times p=12 \times 0.05=0.6$ (0.5 pt)
3. Let X be the total number of defective light bulbs in the three samples. Thus $X=X_{1}+X_{2}+X_{3}$ (0.75 pt). Since $X_{i} \sim \mathcal{B}\left(n_{i}, 0.05\right)$ are independent, then $X \sim \mathcal{B}(n, 0.05)$ with $n=n_{1}+n_{2}+n_{3}=27$ (0.5 pt).
4. We have $n \geq 20$ and $p=0.05 \leq 0.05(0.5 \mathrm{pt})$. We can thus approximate the binomial distribution of X by a Poisson distribution with the rate $\lambda=n \times p=1.35$ (0.75 pt). The distribution of X is then as follows

$$
P(X=x)=\left\{\begin{array}{ll}
\mathrm{e}^{-1.35} \frac{(1.35)^{x}}{x!} & \text { if } x \in \mathbb{N} \\
0 & \text { otherwise }
\end{array} \quad(0.5 \mathrm{pt})\right.
$$

Thus $P(X \geq 4)=1-P(X \leq 3) \approx 0.05(0.5 \mathrm{pt})$

Exercise 2. (7 pts) A machine, A, for checking computer chips uses an average of 65 milliseconds per check with a standard deviation of 4 milliseconds. It is assumed that check times are normally distributed and independent.

1. Calculate the probability that the check time does not exceed 60 milliseconds on machine A.

A newer and cheaper machine B, potentially to be bought, uses on average 54 milliseconds per check.
2. If we know that in $84,13 \%$ of cases, the check time for machine B, does not exceed 57 milliseconds, find its standard deviation.
3. What is the probability that the time savings per check using machine B instead of machine A is less than 10 milliseconds?
The purchase of machine B depends on the check time of 100 chips, which is required to take less than 5.46 seconds in at least 95% of cases.
4. What decision can we make about the purchase of machine B ?

Solution

1. Let X_{A} be the check time per one chip of machine $A . X_{A} \sim \mathcal{N}(65,4)$. (0.5pt) Thus

$$
\begin{equation*}
P\left(X_{A} \leq 60\right)=P\left(\frac{X_{A}-65}{4} \leq\left(\frac{60-65}{4}\right)=\Pi(-1.25)=1-\Pi(1.25)=0.1056\right. \tag{0.5pt}
\end{equation*}
$$

2. Let X_{B} be the check time per one chip of machine $B, X_{B} \sim \mathcal{N}\left(54, \sigma_{B}\right)(0.25 \mathrm{pt})$. It is given that $P\left(X_{B} \leq 57\right)=0.8413$, thus

$$
P\left(X_{B} \leq 57\right)=P\left(\frac{X_{B}-54}{\sigma_{B}} \leq\left(\frac{57-54}{\sigma_{B}}\right)=\Pi\left(\frac{3}{\sigma_{B}}\right)=0.8413\right.
$$

From the Table, we can deduce that $\frac{3}{\sigma_{B}}=1$ and thus $\sigma_{B}=3$ (0.75pt). Therefore, $X_{B} \sim \mathcal{N}(54,3)$
3. We define T the random variable denoting the saving in check time between the two machines. Thus $T=X_{A}-X_{B}(0.75 \mathrm{pt})$. Since X_{A} and X_{B} are independent, we have $T \sim \mathcal{N}(\mu, \sigma)(0.25 \mathrm{pt})$ with

$$
\mu=E(T)=E\left(X_{A}-X_{B}\right)=E\left(X_{A}\right)-E\left(X_{B}\right)=65-54=11 \quad \text { (0.75pt) }
$$

and

$$
\sigma^{2}=\operatorname{Var}(T)=\operatorname{Var}\left(X_{A}-X-B\right)=\operatorname{Var}\left(X_{A}\right)+\operatorname{Var}\left(X_{B}\right)=16+9=25
$$

Thus $\sigma=5$ (0.75 pt) and $T \sim \mathcal{N}(11,5)$.
We are seeking $P(T \leq 10)=P\left(\frac{T-11}{5} \leq-\frac{1}{5}\right)=1-\Pi(0.2)=0.4207(0.5 \mathrm{pt})$
4. Let $S=\sum_{i=1}^{100} X_{B}^{i}$ be the check time of 100 chips for machine $B(0.5 \mathrm{pt}) . S \sim \mathcal{N}(100 \times 54, \sqrt{100} \times 3)$ $(0.5 \mathrm{pt})$. To take a decision about the purchase of the machine B, we need to calculate $P(S \leq 5460)$ which is required to be at least 0.95 . We have

$$
\begin{equation*}
P(S \leq 5460)=P\left(\frac{S-5400}{30} \leq \frac{5460-5400}{30}\right)=\Pi(2)=0.9792>0.95 \tag{0.5pt}
\end{equation*}
$$

Therefore, we can decide to buy the machine $B(0.5 \mathrm{pt})$.

Exercise 3. (7 pts) An e-commerce company is interested in assessing customer satisfaction for a website layout. They collected feedback scores from a small sample of users who experienced the website layout. The satisfaction scores are as follows:

$$
82,85,80,78,84,88,87,90,84,89
$$

We assume that the satisfaction score is a normal distribution with parameters μ and σ

1. Find the estimates for μ and σ
2. Determine a confidence interval for both parameters at a confidence level of 90%.
3. The company believes that the average satisfaction score of the customers about the website layout is 85 . Perform a hypothesis test at a 5% significance level to determine if there is enough evidence to support this claim.

Solution

1. We have $A=\sum x_{i}=847$ and $B=\sum x_{i}^{2}=71879$.

- $\hat{\mu}=\bar{x}=\frac{A}{10}=84.7(0.5 \mathrm{pt})$
- $\hat{\sigma}=\sqrt{\frac{n}{n-1}} \sigma_{e c h}=3.9172(0.5 \mathrm{pt}), \quad$ with $\quad \sigma_{e c h}=\sqrt{\frac{B}{10}-A^{2}}=3.71(0.5 \mathrm{pt})$

2. Since $n<30$ and $\sigma_{\text {pop }}$ is unknown, the random variable $T=\frac{\bar{X}-\mu}{\Sigma_{\text {ech }} / \sqrt{n-1}}$ is a student variable with $n-1$ degree of freedom. A confidence interval for μ is therefore of the form

$$
\begin{equation*}
\left[\bar{X}-t_{\alpha / 2} \frac{\Sigma_{e c h}}{\sqrt{n-1}}, \bar{X}+t_{\alpha / 2} \frac{\Sigma_{e c h}}{\sqrt{n-1}}\right] \tag{0.5pt}
\end{equation*}
$$

such that $P\left(|T| \geq t_{\alpha / 2}\right)=0.05$ From the table, we have $t_{\alpha / 2}=1.833$ (0.5 pt), therefore the 90% confidence interval for μ is [82.43, 86.96] (0.5 pt).

We find the 90% confidence interval for the variance, which is given in this case by $\left[\frac{n \Sigma_{\text {ech }}^{2}}{\chi_{U}^{2}}, \frac{n \Sigma_{\text {ech }}^{2}}{\chi_{L}^{2}}\right]$ (0.5 pt), since the random variable $Y=\frac{n \Sigma_{\text {ech }}^{2}}{\sigma_{\text {pop }}^{2}} \sim \chi_{n-1}^{2}$.
χ_{L}^{2} and χ_{U}^{2} are such that $P\left(Y<\chi_{L}^{2}\right)=P\left(Y>\chi_{U}^{2}\right)=0.05$. From the table we can deduce that $\chi_{L}^{2}=3,33$ and $\chi_{U}^{2}=16,92(0.5 \mathrm{pt})$. The confidence interval for the variance is then given by [8.162, 41.47]. The confidence interval for $\sigma_{p o p}$ can be deduced [2.857, 6.44] (0.5 pt).
3. We have $\alpha=0.05$. We construct the test as follows:

- Formulation of hypotheses (0.5pt): We have $\mathcal{H}_{0}: \mu=\mu_{0}=85$ vs. $\mathcal{H}_{1}: \mu \neq 85$.
- Determination of the discriminant function (0.5 pt):

- Finding the critical values $t_{\alpha / 2}$ of T such that $P\left(|T|>t_{\alpha / 2}\right)=0.05$. From the table, we have $t_{\alpha / 2}=2.262(0.5 \mathrm{pt})$. therefore, the acceptance region is delimited by $[-2.262,2.262]$.
- Calculation of the value of T taken from the sample and conclusion of the test (0.5 pt): We have $T=\frac{84.7-85}{3.71 / 3}=-0.242 \in[-2.262,2.262]$.
Therefore, we accept the null hypothesis $(0.5 \mathrm{pt})$.

