EXAM [Duration: 1 h and 30 min] MICROPROCESSOR SYSTEMS

Exercise 1: «3 pts»

I. Answer the following statements by "right" or "wrong" :

Statements	Right	Wrong
1)) The indirect data transfer between I/O device and memory is called DMA.		
2)) The Von Neumann architecture is the basis of computer architectures.		
3)) ROM is volatile memory.		
4)) The data bus is a bidirectional bus.		
5)) Accumulator is the register in which Arithmetic and Logic calculations are done		
6)) Twelve (12) address lines are required to connect the microprocessor with a 8KB RAM		

Exercise 2: «6 pts»

Consider a Von Neumann architecture equipped with a 20 -bit $\mu \mathrm{P}$ (address) and a data bus of 2 Bytes size running at frequency of 2 GHz .

1. Draw this architecture specifying the location of the different buses and components of the central unit.
2. What is the capacity of memory in bytes and in megabytes?
3. Calculate the time for one cycle of this processor.

Reading a 4-byte block from memory to the processor takes 3 cycles, and processing the 4 bytes by the processor takes 5 cycles.
4. How much time is needed to process all the data contained in memory?

Exercise 3 : < 6 pts »

We have several RAMs (M1) having a capacity of $4 \mathrm{M} \times 8$ bits, a CS input and a W/E input. We want to create a RAM (M2) with a capacity of $8 \mathrm{M} \times 8$ bits.

1- Calculate the size of the address buses of the two types of RAM.
2- How many chips of (M1) are needed to create (M2)
3- Give the wiring diagram
4- Give the intervals of addresses of the used memories (M1) for creating the memory (M2).

Exercise 4: « 5 pts »

Consider the following Flowchart:

[HL] +1

1. Write the correspondent 8085 INTEL microprocessor assembly program.
2. What does this program execute as an operation?

Exam Correction

Exercise 1: «3 pts»

1. Answer the following statements by "right" or "wrong" :

Statements

Right Wrong
1)) The indirect data transfer between I/O device and memory is called DMA .(0,5p)
2)) The Von Neumann architecture is the basis of computer architectures. ($\mathbf{0 , 5 p}$)
3)) ROM is volatile memory. $(\mathbf{0 , 5 p})$
4)) The data bus is a bidirectional bus. ($\mathbf{0 , 5 p}$)
5)) Accumulator is the register in which Arithmetic and Logic calculations are done $(\mathbf{0}, \mathbf{5 p}) \quad \checkmark$
6)) Twelve (12) address lines are required to connect the microprocessor with a 8 KB

RAM $(\mathbf{0 , 5 p})$

Exercise 2: «6 pts »

1.The architecture is as follows: (1p)

2. the capacity of memory in bytes: $2^{20} \times 2^{4}=2^{24}$ bits $=2^{21}$ bytes $(\mathbf{1} \mathbf{p})=2$ megabytes $(\mathbf{1} \mathbf{p})$
3. the time for one cycle of this processor is : T cycle $=1 / \mathrm{f}$ horloge $=\mathbf{0 . 5 n s} \mathbf{(1 \mathbf { p })}$
4. to calculate the time needed to process all the data contained in memory, we have to calculate first :

- number of cycles per block: 8 cycles in total to process 1 block . $\mathbf{(0 , 5 p}$)
- number of all blocks = capacity in bytes / number of bytes for one block
$=2^{21}$ bytes $/ 4=\mathbf{2}^{19}$ block.$(\mathbf{0 , 5 p})$
- number of all cycles $=$ number of all block \times number of cycles per block $=\mathbf{2}^{19} \times 8=$ 2^{22} cycles. ($0,5 \mathrm{p}$)
- time needed to process all the data contained in memory= number of all cycles x time for one cycle $=2^{22} \times 0.5 \mathrm{~ns}=2.09 \mathrm{~ms} .(0,5 \mathrm{p})$

Exercise 3: «6 pts»
1.the size of the address buses of (M1) is : 22 address lines.(1p)

For (M2) is : 23 address lines.(1p)
2.we need two chips of (M1) to create (M2). .(2p)
3. the wiring diagram. .(1p)

5. the addressing intervals: .(1p)

		Binary		Hexadecimal	
		beginning	end	beginning	end
M2	M1 ${ }_{1}$	$\mathrm{A}_{22} \mathrm{~A}_{21} . \ldots . ~$ $\mathrm{~A}_{0}$	A $_{22}$ A $_{21} \ldots . A 0 ~$	000000	3FFFFF
	M12	10000000000000000000000	11111111111111111111111	400000	7FFFFF

Exercise 4: « 5 pts»

1 , The program is : .(4p)

2.the programe executes : 8 BIT DIVISION. .(1p)

