

Option : L3 Electronics

Subject : Microprocessor System

EXAM [Duration: 1h and 30 min] MICROPROCESSOR SYSTEMS

Exercise 1 : « 3 pts »

I. Answer the following statements by "right" or "wrong" :

Statements	Right	Wrong
1)) The indirect data transfer between I/O device and memory is called DMA.		
2)) The Von Neumann architecture is the basis of computer architectures.		
3)) ROM is volatile memory.		
4)) The data bus is a bidirectional bus.		
5)) Accumulator is the register in which Arithmetic and Logic calculations are done		
6)) Twelve (12) address lines are required to connect the microprocessor with a 8KB RAM		

Exercise 2: « 6 pts »

Consider a Von Neumann architecture equipped with a 20-bit μP (address) and a data bus of 2 Bytes size running at frequency of 2 GHz.

- 1. Draw this architecture specifying the location of the different buses and components of the central unit.
- 2. What is the capacity of memory in bytes and in megabytes?
- 3. Calculate the time for one cycle of this processor.

Reading a 4-byte block from memory to the processor takes 3 cycles, and processing the 4 bytes by the processor takes 5 cycles.

4. How much time is needed to process all the data contained in memory?

Exercise 3 : « 6 pts »

We have several RAMs (M1) having a capacity of 4M×8 bits, a CS input and a W/E input. We want to create a RAM (M2) with a capacity of 8M×8 bits.

- 1- Calculate the size of the address buses of the two types of RAM.
- 2- How many chips of (M1) are needed to create (M2)
- 3- Give the wiring diagram
- 4- Give the intervals of addresses of the used memories (M1) for creating the memory (M2).

Option : L3 Electronics

Exercise 4: « 5 pts »

Consider the following Flowchart:

- 1. Write the correspondent 8085 INTEL microprocessor assembly program.
- 2. What does this program execute as an operation?

Exam Correction

Exercise 1 : « 3 pts »

1. Answer the following statements by "right" or "wrong" :

Statements	Right	Wrong
1)) The indirect data transfer between I/O device and memory is called DMA .(0,5p)		J
2)) The Von Neumann architecture is the basis of computer architectures. (0,5p)	J	
3)) ROM is volatile memory. (0,5p)		J
4)) The data bus is a bidirectional bus. (0,5p)	J	
5)) Accumulator is the register in which Arithmetic and Logic calculations are done(0,5p)	J	
6)) Twelve (12) address lines are required to connect the microprocessor with a 8KB		J
RAM(0 , 5p)		

Exercise 2: «6 pts»

1.The architecture is as follows : (1p)

- ^{2.} the capacity of memory in bytes : $2^{20} \times 2^4 = 2^{24}$ bits = 2^{21} bytes(1p)=2megabytes(1p)
- ^{3.} the time for one cycle of this processor is : T cycle = 1/f horloge = **0.5ns** (1p)
- ^{4.} to calculate the time needed to process all the data contained in memory, we have to calculate first :
 - number of cycles per block: 8 cycles in total to process 1 block .(0,5p)

- number of all blocks = capacity in bytes / number of bytes for one block
 =2²¹bytes/4=2¹⁹block .(0,5p)
- number of all cycles = number of all block × number of cycles per block= 2¹⁹×8= 2²²cycles.(0,5p)
- time needed to process all the data contained in memory= number of all cycles× time for one cycle=2²²×0.5ns=2.09ms.(0,5p)

Exercise 3: « 6 pts »

1.the size of the address buses of (M1) is : 22 address lines. $\left(1p\right)$

For (M2) is : 23 address lines.(1p)

2.we need two chips of (M1) to create (M2). .(2p)

3. the wiring diagram. .(1p)

5. the addressing intervals: .(1p)

		Binary		Hexadecimal	
		beginning	end	beginning	end
M2	M1 1	A ₂₂ A ₂₁ A ₀ 00000000000000000000000000000000000	A ₂₂ A ₂₁ A ₀ 0111111111111111111111111	000000	3FFFFF
	M12	100000000000000000000000000000000000000	1 11111111111111111111111111111111111	400000	7FFFFF

Exercise 4: « 5 pts »

1, The program is : .(**4p**)

	MVI	B,00	Clear B reg for quotient
	LXI	H,4500	Initialize HL reg. to 4500H
	MOV	A,M	Transfer dividend to acc.
	INX	н	next mem. Location.
LOOP	SUB	M	Subtract divisor from dividend
	INR 🧹	В	Increment B reg
	JNC	LOOP	Jump to LOOP if result does
			not yield borrow
	ADD	М	Add divisor to acc.
	DCR	В	Decrement B reg
	INX	Н	Increment HL reg. to point next mem. Location.
	MOV	M,A	Transfer the remainder from acc. to memory.
СГ	INX	H	Increment HL reg. to point next mem. Location.
	MOV	M,B	Transfer the quotient from B reg. to memory.
	HLT		Stop the program

2.the programe executes : 8 BIT DIVISION. .(1p)