Kasdi Merbah University, Ouargla
Department of Computer Science and IT
Master 1 Artificial Intelligence and Data Science
Mathematics for Machine Learning 1.

Midterm Exam Correction

Exercise 1. (6 pts) Consider the following system:

$$
\left\{\begin{array}{l}
x-2 y+k z=-k \\
y+z=k \\
(k+2) x+2 k y-z=1
\end{array}\right.
$$

1. For which values of k does the system have a unique solution?
2. For which values of k does the system have infinitely many solutions? If any, find for those values of k all system solutions.

Solution

First, we need to write the augmented matrix $(\mathbf{A} \mid \mathbf{b})$ in an echelon form:

$$
\left.\begin{array}{c}
\left(\begin{array}{ccc|c}
1 & -2 & k & -k \\
0 & 1 & 1 & k \\
k+2 & 2 k & -1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -2 & k & -k \\
0 & 1 & 1 & k \\
0 & 4 k+4 & -(k+1)^{2} & (k+1)^{2}
\end{array}\right) \\
\quad \sim\left(\begin{array}{cc|c}
1 & -2 & k \\
0 & 1 & 1 \\
0 & 0 & -(k+1)(k+5)
\end{array}\right. \\
(k+1)(-3 k+1)
\end{array}\right)(1 \mathrm{pt}) \quad \begin{aligned}
& -k \\
& k
\end{aligned}
$$

1. We can notice that if $k \neq-1$ and $k \neq-5$, the matrix is full rank. which means that in that case, the system admits a unique solution (1pt).
2. If $k=-1$ that the system has an infinite number of solutions (1 pt). In that case, the echelon form of the augmented matrix is as follows:

$$
\left(\begin{array}{ccc|c}
1 & -2 & -1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

A particular solution is obtained by setting $z=0$, we obtain then the solution $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$ (1pt).
The general solution can be obtained by solving the system $\mathbf{A x}=\mathbf{0}$. We write that matrix \mathbf{A} in a reduced echelon form (1pt):

$$
\left(\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

By using the (-1)-trick to the zero-row free reduced echelon form, we obtain:

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

Therefore, the set of all solutions of the linear system is

$$
\left\{\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right\}(1 \mathrm{pt})
$$

Exercise 2. (6 pts) Let $V=\operatorname{span}(v 1 ; v 2 ; v 3) \subset \mathbb{R}^{4}$ where

$$
v_{1}=(1,1,1,1)^{\top}, \quad v_{2}=(2,2,2,3)^{\top}, \quad v_{3}=(1,1,2,-3)^{\top}
$$

Let W be the subset of V which contains all and only the vectors of V that have the first two components equal to 0 .

1. Compute $\operatorname{dim} V$.
2. Give a description of the set W. Is W a subspace of V ?
3. Find a basis for W.

Solution

1. Consider the matrix \mathbf{A} which columns are the vectors v_{1}, v_{2}, v_{3} :

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 2 \\
1 & 3 & -3
\end{array}\right)
$$

Writing the echelon form of the matrix, we obtain

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 2 \\
1 & 3 & -3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -4
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & -4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

We can notice that vectors v_{1}, v_{2}, v_{3} are linearly independent and thus they constitute a basis for V, which means that $\operatorname{dim} V=3(1 \mathrm{pt})$.
2. W is the subset of V which contains all and only the vectors of V that have the first two components equal to 0 . Therefore, we can write elements of W as follows

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \in V: x_{1}=x_{2}=0\right\}(1 \mathrm{pt})
$$

We can verify that W is a subspace in V, since

- $\mathbf{0}=(0,0,0,0)^{\top} \in W(0.5 \mathrm{pt})$,
- For $w_{1}, w_{2} \in W$, we have

$$
w_{1}=\left(\begin{array}{l}
0 \\
0 \\
x \\
y
\end{array}\right) \quad w_{2}=\left(\begin{array}{l}
0 \\
0 \\
z \\
t
\end{array}\right) \Rightarrow w_{1}+w_{2}=\left(\begin{array}{c}
0 \\
0 \\
x+z \\
y+t
\end{array}\right) \Rightarrow w_{1}+w_{2} \in W(0.75 \mathrm{pt})
$$

- For $w \in W$, we have

$$
w=\left(\begin{array}{l}
0 \\
0 \\
x \\
y
\end{array}\right) \Rightarrow \lambda w=\left(\begin{array}{c}
0 \\
0 \\
\lambda x \\
\lambda y
\end{array}\right) \Rightarrow \lambda w \in W(0.75 \mathrm{pt})
$$

3. The set W can be written as $W=V \cap Z$, where $Z=\left\{(x, y, z, t) \in \mathbb{R}^{4}: x=y=0\right\}$. This means that Z is the set of solutions of the linear system

$$
\left\{\begin{array}{l}
x=0 \\
y=0
\end{array}\right.
$$

On the other hand, elements of the vector space V can be described as a linear combination of vectors v_{1}, v_{2}, v_{3}. Thus they are all vectors v that can be written as $\mathbf{A} \mathbf{x}=\mathbf{v}$. considering the augmented matrix $\mathbf{A} \mid \mathbf{v}$, we have

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & v_{1} \\
1 & 2 & 1 & v_{2} \\
1 & 2 & 2 & v_{3} \\
1 & 3 & -3 & v_{4}
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 2 & 1 & v_{1} \\
0 & 0 & 0 & v_{2}-v_{1} \\
0 & 0 & 1 & v_{3}-v_{1} \\
0 & 1 & -4 & v_{4}-v_{1}
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 2 & 1 & v_{1} \\
0 & 1 & -4 & v_{4}-v_{1} \\
0 & 0 & 1 & v_{3}-v_{1} \\
0 & 0 & 0 & v_{2}-v_{1}
\end{array}\right)
$$

Thus V can be described as the solution for the linear system $v_{2}-v_{1}=0$. The set W is then the set of solutions of the linear system

$$
\left\{\begin{array}{l}
x-y=0 \\
x=0 \\
y=0
\end{array}\right.
$$

We can notice that the first equation is redundant, thus $W=V \cap Z=Z$. Therefore, a basis for W is $\left[\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right) ;\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right]$ (2pts)

Exercise 3. ($\mathbf{2} \mathbf{~ p t s}$) Consider the following definition: If S_{1} and S_{2} are nonempty subsets of a vector space V, then the sum of S_{1} and S_{2}, denoted by $S_{1}+S_{2}$, is the set $\left\{x+y: x \in S_{1}, y \in S_{2}\right\}$. Now consider two subspaces W_{1} and W_{2} of V.

- Prove that $W_{1}+W_{2}$ is a subspace of V that contains both W_{1} and W_{2}.

Solution

First, consider $u \in W_{1}$. Since W_{2} is a subspace of V then $0 \in W_{2}$. This means that $u+0=u \in W_{1}+W_{2}$ and consequently, $W_{1} \subset W_{1}+W_{2}$.
Similarly, with $v \in W_{2}$ and $0 \in W_{2}$, we have $0+v=v \in W_{1}+W_{2}$. Thus $W_{2} \subset W_{1}+W_{2}$. (0.5pt)
Now, let us prove that $W=W_{1}+W_{2}$ is a subspace (1.5pt):

- $0 \in W_{1} \subset W$.
- For two vectors w and w^{\prime} from W, we have $w=w_{1}+w_{2}$ and $w^{\prime}=w_{1}^{\prime}+w_{2}^{\prime}$. Thus, $w+w^{\prime}=$ $w_{1}+w_{2}+w_{1}^{\prime}+w_{2}^{\prime}=\left(w_{1}+w_{1}^{\prime}\right)+\left(w_{2}+w_{2}^{\prime}\right) \in W_{1}+W_{2}=W$
- For a vector $w \in W$ we have $\lambda w=\lambda\left(w_{1}+w_{2}\right)=\left(\lambda w_{1}\right)+\left(\lambda w_{2}\right) \in W_{1}+W_{2}=W$.

Exercise 4. ($6 \mathbf{p t s}$) Consider the Euclidean vector space \mathbb{R}^{3} with the dot product. Consider the subspace defined by $U=\operatorname{span}\left(v_{1} ; v_{2}\right) \subset \mathbb{R}^{3}$, such that

$$
v_{1}=(-1,1,1)^{\top} ; v_{2}=(2,-1,-2)^{\top}
$$

Let $v=(8,4,16)^{\top}$.

1. Show that $v \notin U$.
2. Use Gram-Schmidt orthogonalization to transform the matrix $\mathbf{A}=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1 \\ 1 & -2\end{array}\right]$ into a matrix B with orthonormal columns.
3. Determine the orthogonal projection of v onto U then compute the distance $d(v, U)$.

Solution

1. To show that $v \notin U$, we show that the matrix A whose columns are v_{1}, v_{2} and v is of full rank (this means that v cannot be written as a linear combination of v_{1} and v_{2}). For this, we need to write \mathbf{A} in a echelon form:

$$
\left(\begin{array}{ccc}
-1 & 2 & 8 \\
1 & -1 & 4 \\
1 & -2 & 16
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -2 & -8 \\
0 & 1 & 12 \\
0 & 0 & 24
\end{array}\right)
$$

Thus, $\operatorname{rk}(\mathbf{A})=3$, which means that v, v_{1}, v_{2} are linearly independent and therefore $v \notin U$.
2. Consider the vectors v_{1} and v_{2}. We use the Gram Schmidt orthogonalization to obtain orthonormal vectors. In this case, the Gram-Schmidt process is described as follows:

$$
\begin{cases}u_{1} & =v_{1} \\ u_{2} & =v_{2}-\pi_{u_{1}}\left(v_{2}\right)\end{cases}
$$

We have then $u_{1}=v_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ and $u_{2}=v_{2}-\pi_{u_{1}}\left(v_{2}\right)$. The projection matrix is defined by

$$
\mathbf{P}_{\pi}=\frac{v_{1} v_{1}^{\top}}{\left\|v_{1}\right\|^{2}}=\frac{1}{3}\left(\begin{array}{ccc}
1 & -1 & -1 \tag{1pt}\\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)
$$

and

$$
\pi_{u_{1}}\left(v_{2}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
5 \\
-5 \\
-5
\end{array}\right) \quad(0.75 \mathrm{pt})
$$

Thus

$$
u_{2}=v_{2}-\pi_{u_{1}}\left(v_{2}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right)-\frac{1}{3}\left(\begin{array}{c}
5 \\
-5 \\
-5
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \quad(0.75 \mathrm{pt})
$$

To obtain B, we orthonormalize each one of the vectors u_{1} and u_{2} :

$$
\mathbf{B}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}}
\end{array}\right) \quad(0.5 \mathrm{pt})
$$

3. We first compute the projection matrix for U. since vector columns in B constitute orthonormal basis of U we have

$$
\mathbf{P}_{\pi}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1} \mathbf{B}^{\top}=\mathbf{B B}^{\top}
$$

$$
\mathbf{P}_{\pi}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \tag{1pt}\\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ccc}
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

The orthogonal projection of v onto U is the computed as follows:

$$
\pi_{U}(v)=\mathbf{P}_{\pi} v=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
8 \\
4 \\
16
\end{array}\right)=\left(\begin{array}{c}
-4 \\
4 \\
4
\end{array}\right) \quad(0.5 \mathrm{pt})
$$

The distance $d\left(v, \pi_{U}(v)\right)$ is then given by $\sqrt{(8+4)^{2}+(4-4)^{2}+(16-4)^{2}}=12 \sqrt{2}$. (0.5pt)

