

University of Kasdi Merbah Ouargla

Faculty of New Technologies for the Information and Communication Department of Electronics and Communications

<u>Module</u>: Fundamental Electrical Engineering 1

L2 ST

Dr: M. Bouzidi / Dr: M. Korichi

Exam (1h :30 min)

Exercise 1 (6 pts)

Using the mesh analysis, find J_1 , J_2 and J_3 .

Deduce the voltage V_y .

 $I = 12 \text{ A}, R = 10 \Omega.$

Solution

Mesh(1):

 $J_1 = I$

$$\underline{Mesh (3):} \qquad \qquad \bigvee_{\mathbf{z}} \downarrow R_{\mathbf{z}} \downarrow R_{$$

Exercise 2 (2 pts)

Find the Thevenin's resistor between a and b.

 $R_1=10\Omega, R_2=15, R_3=20\Omega, R_4=15\Omega.$

Solution

$$R_{Th} = \dots \underbrace{R_1 \times R_2}_{2} = \underbrace{R_1 \cdot R_2}_{R_1 + R_2} \dots \underbrace{1 \ pt}$$

$$R_{Th} = \dots \Omega$$

R

S.N _

Exercise 3 (6 pts)

Using the nodal analysis, find V_1, V_2 and V_3 .

Deduce the voltage V_y .

$$E = 120V, I = 10A, R = 10\Omega.$$

Solution

<u>Node (1,2):</u> < 0.75 pt

$$(S.N): \frac{V_1}{R} + \frac{V_2 - V_3}{R} = \overline{I} - \overline{I}_{2L}$$

$$V_x = ... V_3 ... V_2 ... V_3 ... V_$$

1 pt

0.75 pt

 \overline{R}

Exercise 3 (6 pts)

The three-phase balanced system 220/380V 50Hz in the figure below supplies a three inductive impedances $\bar{Z} = 50 \angle 45^{\circ}\Omega$ contains R=?, L=100 mH.

- 1- What is the type of connection?
- 2- What the voltage across each impedance.
- 3- Calculate the value of the resistance R.
- 4- Calculate the phase current J, the line current I, and the power factor.
- 5- Calculate the active power P, reactive Q, and apparent power S.
- 6- Calculate the capacitor coupled in delta that raises the power factor to 1.
- 7- In the phasor diagram showing below, represent the vectors: U_{ab} , U_{bc} , U_{ca} , J_{ab} , J_{bc} , J_{ca} .

Solution

- 2- The voltage across each impedance is .3.2.0... V 0.25 pt
- 3- Calculation of resistance R:

4- Calculation of the phase current J, line current I, and the power factor PF.

5- Powers calculation

•
$$P = \sqrt{3} \text{ U-T} \cdot \text{Cos} \varphi$$
 $Q = \sqrt{3} \text{ U-T sin } \varphi$ $Q = \sqrt{3} \text$

6- Capacitor calculation

•
$$C = \frac{P(t_0(45)-t_0(0))}{3 L^2 \omega}, C = \frac{4.50 \times 40^{-5}}{0.25 pt}$$

7- Phasor diagram, Representation of the vectors: U_{ab} , U_{bc} , U_{ca} , J_{ab} , J_{bc} , J_{ca}

