

## EXAM

Q1. Fill in the table below with the appropriate word from: sclera, iris, fovea, retina, lens

| Role | Organ |
| :--- | :--- |
| Contains light receptors | Retina |
| Offer the ability to see visual details | Fovea |
| Controls the amount of light entering to the eye | Iris |
| Provide nutrition to the eye | Sclera |
| Refract the light entering to the eye | Lens |

Q2. We have two waves $w 1$ and $w 2$, such that the wavelength of $w 1$ is much higher than the wavelength of $w 2\left(w 1=10^{13} \times w 2\right)$. The energy of photons that correspond to each wave are respectively denoted by $E 1$ and $E 2$. Select the suitable answer from $(E 1=E 2, E 1>E 2, E 1<E 2)$.

Q3. To capture an image for an object with a diameter $10^{-7} \mathrm{~m}$, we should use a light source which emits waves with a wavelength of (Select the suitable answer from: $10^{7}, 10^{-9}, 10^{1}, 10^{-6}$ )

Q4. By increasing the sampling ratio, the image quality will decrease? (True / False)
Q5. In CMYK color space, which mix of colors we should use to produce the white color?
No mix is needed, the white color is the background on which the other colors are supplied (white paper).

Q6. In CMYK, mixing magenta, yellow and cyan (with $100 \%$ for each) produces the black color?
No, the produced color is a shade of gray.
Q7. In CMYK, to produce the blue color, which are the two color we have to use?

## Cyan and Magenta

Q8. Given two color: $C 1$ and $C 2$ that are represented in the HSV color space, suppose that the value of the both colors equal to 1 , what is the difference between them if you know that saturation of $C 1$ $>$ saturation of $C 2$ ?
$C 1$ is more pure / darker than $C 2$

Q9. How many bits we need to represent $100 \times 100$ image in HSV color space (H is represented using 6 bins)?
If $H$ is represented with 6 bins, thus, it needs 3 bits for representation. As for $S$ and $V(0-100)$, we need 7 bits for each. Therefore, in total, we need $7+7+3=17$ bits.
$100 \times 100 \times 17=170000$ bits.
Q10. Suppose we are given an $N \times N$ image, with a bit depth equal to $B$. We need 125000 bits to store this image. By decreasing the image size by 25 pixels (in rows and columns), and increasing the bit depth by 1 , we need 90000 bits to store the new image. Find $N$ and $B$ ?

We need to solve the two equations

$$
\begin{gathered}
N \times N \times B=125000 \\
(N-25) \times(N-25) \times(B+1)=90000 \\
N=125, B=8
\end{gathered}
$$

Q11. Normalize the following image [310 18128491782083270 15] to the range of [0 255]?
We use the equation

$$
\begin{gathered}
N e w=255 \times \frac{x-X_{\min }}{X_{\max }-X_{\min }} \\
N e w=255 \times \frac{310-0}{327-0}=241.74
\end{gathered}
$$

[241.74 $141.14221 .4670 .96 \quad 60.82162 .20 \quad 1 \quad 0 \quad 11.69]$
Q12. Given the two following images (1x8): $\mathrm{A}=11010110$ and $\mathrm{B}=00111001$, calculate the output image of $\operatorname{XNOR}(((\mathrm{A}$ and B$)$ or B$)$ XOR A $), \mathrm{B})$ ?
$(11010110$ and 00111001$)=00010000$
$(00010000$ or 00111001$)=00111001$
$(00111001$ XOR 11010110$)=11101111$
$(11101111$ XNOR 00111001 $)=00101001$
Q13. Transform the following image [71293611201952] using the linear transformation $f(x)=$ $2 x+1$ ?
[14359732351319105]

Q14. Perform the erosion and dilation on the image below using a structuring element at right (use zero-padding)

| 0 | 1 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 |


| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 0 | 1 | 0 |

## Erosion

| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

## Dilation

| 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

Q15. Fill in a $5 \times 5$ Gaussian filter, if you know that the central value $=0.72$, and each time by going far away from the center the value decreases by $10 \%$ ?

| 0.41 | 0.45 | 0.51 | 0.45 | 0.41 |
| :--- | :--- | :--- | :--- | :--- |
| 0.45 | 0.57 | 0.64 | 0.57 | 0.45 |
| 0.51 | 0.64 | $\mathbf{0 . 7 2}$ | 0.64 | 0.51 |
| 0.45 | 0.57 | 0.64 | 0.57 | 0.45 |
| 0.41 | 0.45 | 0.51 | 0.45 | 0.41 |

Q16. Verify that Laplacian of Gaussian can be written as $\Delta^{2} G=\frac{1}{\sigma^{2}}\left(\frac{x^{2}+y^{2}}{\sigma^{2}}\right) G(x, y)$ such that $G(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{\sigma^{2}}}$ ?

## Simple proof!

Q17. Apply $3 \times 3$ mean, median, and vertical sobel filters on the following image (do not use zero padding)?

| 1 | 2 | 0 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 0 | 4 | 2 | 4 |
| 8 | 3 | 1 | 3 | 6 |
| 9 | 2 | 1 | 0 | 3 |
| 5 | 5 | 0 | 0 | 1 |

Mean filter

| X | X | X | X | X |
| :--- | :--- | :--- | :--- | :--- |
| X | 2.88 | 2.44 | 4 | X |
| X | 3.88 | 1.77 | 2.33 | X |
| X | 3.77 | 1.66 | 1.66 | X |
| X | X | X | X | X |

Median filter

| X | X | X | X | X |
| :--- | :--- | :--- | :--- | :--- |
| X | 2 | 2 | 4 | X |
| X | 3 | 2 | 3 | X |
| X | 3 | 1 | 1 | X |
| X | X | X | X | X |

Vertical sobel

| $X$ | $X$ | $X$ | $X$ | $X$ |
| :--- | :--- | :--- | :--- | :--- |
| $X$ | -14 | 5 | 14 | $X$ |
| $X$ | -25 | 0 | 12 | $X$ |
| $X$ | -28 | -9 | 10 | $X$ |
| $X$ | $X$ | $X$ | $X$ | $X$ |

Q18. Apply hysteresis thresholding on the following magnitude image, where TLow $=31$ and Thigh $=$ 92? Mark edge pixels using 1 and 0 otherwise.

| 12 | 7 | 88 | 26 | 30 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 189 | 55 | 13 | 145 | 169 | 23 | 2 |
| 74 | 247 | 231 | 118 | 221 | 224 | 45 |
| 65 | 62 | 165 | 36 | 14 | 10 | 2 |
| 254 | 10 | 19 | 15 | 5 | 236 | 65 |
| 0 | 2 | 255 | 1 | 3 | 78 | 0 |
| 0 | 7 | 7 | 0 | 0 | 17 | 0 |


| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Points $=(1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+3+1)$

