Kasdi Merbah University – OUARGLA

Faculty of New Information and Communication Technologies (FNTIC)

Department of Computer Science and Information Technologies

Exam (Semester 1)

-MASTER 2 - Fundamental Computer Science

Course: Parallel Algorithms
Duration: 1 hour and 30 minutes
(No authorized documents)

- 1) What is multithreading?
 - 1. A way to parallelize code execution using multiple processes
 - 2. A way to parallelize code execution using multiple threads within a process
 - 3. A way to distribute code execution across multiple machines
 - 4. A way to serialize code execution for better performance
- 2) Which of the following is an advantage of multithreading over multiprocessing?
 - 1. Better utilization of multiple processors
 - 2. Easier to implement
 - 3. Improved fault isolation
 - 4. Increased memory space
- 3) What is a message in the context of the message-passing paradigm?
 - 1. A system call
 - 2. A lightweight process
 - 3. A unit of data sent from one process to another
 - 4. A separate program
- 4) What is distributed memory in parallel architecture?
 - 1. Memory that is distributed across multiple computers
 - 2. Memory that is distributed among multiple processes within the same system
 - 3. Memory that is distributed among multiple cores on a single processor
 - 4. Memory that is private to each processor
- 5) What is dynamic balancing in parallel architectures?
 - 1. Adjusting the distribution of tasks during runtime
 - 2. Balancing tasks at the beginning of program execution
 - 3. Allocating tasks based on a fixed schedule
 - 4. Prioritizing tasks based on their complexity
- 6) What is loop parallelization in the context of parallel computing?
 - 1. Executing loops sequentially
 - 2. Dividing a loop into parallel tasks
 - 3. Skipping loops for faster execution
 - 4. Transforming loops into recursive functions

- 7) In loop parallelization, what is a reduction operation?
 - 1. An operation that increases loop iteration count
 - 2. An operation that combines results from multiple iterations into a single value
 - 3. An operation that skips certain loop iterations
 - 4. An operation that reduces the number of loop iterations
- 8) What is "embarrassingly parallel" computing?
 - 1. Computing that is overly complex and difficult to parallelize
 - 2. Computing tasks that can be parallelized with minimal effort and coordination
 - 3. The inability of a method to scale efficiently
 - 4. A type of parallel algorithm with high task dependency

Exercise 1

1. Provide the 'sequential' set of instructions to calculate the expression $Y=x^3+2x^2-3x$

t0= x * x
t1 = x * x
t2 = 3 * x
t3 = t0 * x
t4= 2 * t1
t5 = t3 + t4
y = t5 - t2

2. How many time units are required to perform this calculation?

Answer: 7

3. Provide the data flow graph (or the task dependency graph) for a parallel algorithm calculating the expression Y?

Answer:

4. How many time units are required to perform this parallel algorithm?

Answer: 4

5. Evaluate the degree of parallelism of this parallel algorithm?

Answer:

Times	PD
T0	3
T1	2
T2	1
T3	1

6. Evaluate the average degree of parallelism of this parallel algorithm?

Answer : ADP = (3+2+1+1)/4

7. Find the length of the critical path of this parallel algorithm?

Answer: The length of the CP = 3

8. Determine the ideal parallel execution time of this parallel algorithm ?

Answer : The Ideal Parallel Execution Time = 4 (3+1)

Number of execution units	Minimum time	
1	7	
2	5	
3	4	
4	4	
5	4	

Exercise 2

Perform the Odd-Even Sort of the following data on a 5-processor machine. 15, 15, 13, 10, 7, 9, 11, 2, 1, 4, 12, 14, 3, 6, 7, 8, 3

Answer:

Processor	P1	P2	Р3	P4	P5
Initial state	15, 15, 13, 10	7, 9, 11, 2	1, 4, 12	14, 3, 6	7, 8, 3
Local sort	10, 13, 15, 15	2, 7, 9, 11	1, 4, 12	3, 6, 14	3, 7, 8
Odd	2, 7, 9,10	11, 13, 15, 15	1, 3, 4	6, 12, 14	3, 7, 8
Even	2, 7, 9,10	1, 3, 4, 11	13, 15, 15	3, 6, 7	8, 12, 14
Odd	1,2,3,4	7,9,10,11	3, 6, 7	13, 15, 15	8, 12, 14
Even	1,2,3,4	3, 6, 7,7	9,10,11	8,12,13	14,15,15
Odd	1,2,3,3	4,6,77	8,9,10	11,12,13	14,15,15