Kasdi Merbah University – OUARGLA Faculty of New Information and Communication Technologies (FNTIC) Department of Computer Science and Information Technologies Exam (Semester 1) -MASTER 2 - AI Course: Natural Language Processing Duration: 1 hour and 30 minutes (No authorized documents)

- 1) What are word embeddings?
 - 1. Vectors representing words, such that semantically similar words are represented by similar vectors.
 - 2. Vectors used to compress the meaning of a text in sequence-to-sequence problems.
 - 3. A mechanism that made neural networks more efficient, leading to the birth of the Transformer neural network.
- 2) What do nodes and edges in a semantic networks typically represent?
 - 1. Nodes represent relationships, and edges represent concepts.
 - 2. Nodes represent words, and edges represent semantic relationships between the words.
 - 3. Nodes represent concepts, and edges represent relationships between the concepts.
- 3) What is tokenization in NLP?
 - 1. The process of splitting text into tokens, which are usually individual words but they can be also single characters or subwords.
 - 2. The process of inferring tokens from text, such as noun phrase, verb phrase, noun, adjective, etc.
 - 3. The process of solving ambiguities in sentences, linking words to their meanings in lexical databases.
- 4) What is text vectorization?
 - 1. The process of converting text into an unordered set of words.
 - 2. The process of converting text into a numerical vector that most machine learning models can understand.
 - 3. The process of converting text into vectors of words that are easier to use by machine learning models.
- 5) What is a bag of words representation?
 - 1. A representation where text is represented as the set of its words, disregarding word order but considering grammar.
 - 2. A representation where text is represented as the set of its words, disregarding grammar and even word order but keeping multiplicity.
 - 3. A representation where text is represented as the ordered list of its words, disregarding grammar but keeping multiplicity.
- 6) What do we mean by inflection when talking about natural languages?
 - 1. It's the modification of a word to express different grammatical categories such as tense, case, and gender.
 - 2. It's the modification of a word over time to express different meanings.
 - 3. It's the tone of voice of a specific word relative to its context.

- 7) Which of the following reduces words always to a base-form which is an existing word?
 - 1. Stemming.
 - 2. Lemmatization.
 - 3. Tokenization.
 - 4. Normalization
- 8) Which of the following can leverage context to find the correct base-form of a word?
 - 1. Stemming.
 - 2. Normalization
 - 3. Lemmatization.
 - 4. Tokenization.
- 9) Which of the following is typically faster?
 - 1. Stemming.
 - 2. Lemmatization.

10) Stopwords are the words that, in a typical corpus, have the...

- 1. Most occurrences.
- 2. Least occurrences.
- 11) As a consequence of TF-IDF:
 - 1. Rare words have high scores, common words have low scores
 - 2. Common words have high scores, rare words have low scores

12) Choose the correct option.

- 1. Word embeddings models are often finetuned models that can be retrained for specific use cases.
- 2. Word embeddings models must be trained from scratch for each specific use case.
- 3. Word embeddings models are often pre-trained models that can be finetuned for specific use cases.

13) A morpheme is...

- 1. A meaningful sound
- 2. A meaningful word
- 3. The smallest unit of meaning in a language
- 4. A sentence structure

14) An inflectional morpheme is used for...

- 1. Changes the grammatical category of a word
- 2. Adds extra meaning to a word
- 3. Marks grammatical relationships, such as tense or plural
- 4. Combines two words to form a new one

15) Which of the following is an example of an inflectional morpheme?

- 1. -er (as in "teacher")
- 2. -s (as in "cats")
- 3. -ly (as in "quickly")
- 4. un- (as in "unhappy")

16) Which morphological process involves combining two or more words to create a new one?

- 1. Derivation
- 2. Compounding
- 3. Inflection
- 4. Prefixing

17) Which morphological process involves changing the grammatical category of a word?

- 1. Inflection
- 2. Derivation
- 3. Compounding
- 4. Reduplication

18) Which technique is used to represent words as dense vectors in a continuous vector space?

- 1. One-Hot Encoding
- 2. Bag-of-Words
- 3. Word Embedding
- 4. TF-IDF

19) What is the primary purpose of a thesaurus in NLP?

- 1. Spell checking
- 2. Synonym identification
- 3. Named entity recognition
- 4. Speech synthesis

20) What is WordNet primarily used for in NLP?

- 1. Speech synthesis
- 2. Named entity recognition
- 3. Semantic analysis and lexical relations
- 4. Text summarization

21) In WordNet, what does a synset represent?

- 1. A synonym
- 2. A set of homophones
- 3. A set of words with similar meanings
- 4. A part-of-speech tag

22) What is PARSEVAL in the context of NLP?

23) Consider the following PCFG (Probabilistic Context-Free Grammar) with non-terminal symbols S, NP, VP, and terminal symbols N (noun), V (verb), and Det (determiner). The associated probabilities are as follows:

 $S \rightarrow NP VP [0.6]$ $NP \rightarrow N [0.4]$ $NP \rightarrow Det N [0.6]$ $VP \rightarrow V [0.5]$ $VP \rightarrow V NP [0.5]$ $Det \rightarrow "the" [0.8]$ $N \rightarrow "cat" [0.7]$ $N \rightarrow "dog" [0.3]$ $V \rightarrow "chased" [0.8]$

Given the sentence "The cat chased the dog" :

- 1. Construct a parse tree for the sentence.
- 2. Compute the probability of generating this sentence according to the PCFG.

Kasdi Merbah University – OUARGLA

Faculty of New Information and Communication Technologies (FNTIC) Department of Computer Science and Information Technologies

Exam (Semester 1) -MASTER 2 - AI

Course: Natural Language Processing Duration: 1 hour and 30 minutes

Last name and first names :

Question N°	1	2	3	4
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				

Question N° 22 :

•••••	 •••••	
•••••	 	

Question N° 23 :

1) The parse tree :

2) The probability :

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
		•••••••••••••••••••••••••••••••••••••••	
		••••••	